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Abstract  

This work presents the experimental investigation results of high performance and low emission 

colorless combustion in a gas turbine tubular combustor at atmospheric conditions. Low emission and 

colorless oxidation reaction is characterized by dispersed flame and temperature under the conditions of 

preheated air. System performance, emissions of CO and UHC are recorded up to achieve low emission 

colorless combustion, the flame capturing, Measurements of temperature, inlet air mass flow rate and gas 

fuel LPG flow rate for variable of fuel main injector holes diameter. concluded that maximal air mass flow 

rate, with choked fuel flow in the main injector for each cases promotes the formation of colorless pal blue 

flame combustion, for 3.2 g/s of fuel flow rate with 6 holes and 1mm main injector holes diameter and lower 

CO emissions and decreasing in UHC emissions (70 → 10) ppmv with increasing in power generation (0.5 

→ 3.42) kW and decreasing in S.F.C. (21.5 → 3.49) kg/kwh.  

Key words: Gas Turbine, Tubular Combustor, Colorless combustion, Low Emission, LPG Fuel.  

Nomenclature  

A                    Area [m2].  

D                    Diameter [m].  

F1                   fuel mass flow rate in main injection line.  

L                     Length [m].  

m•                   Flow Rate [kg/s].  

P                    Total Pressure [Pa].  

Pr                   Pressure Ratio (P3/P1).  

qRef                 Dynamic pressure along the combustor. 

S. F. C            Specific fuel consumption. 

S. L. F. I         Secondary line of fuel injection. 

T                    Total Temperature [K].  

V                    Velocity [m/s].  
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Greek Symbols  

θ                   Angle (Diffuser or Snout or Dome) [°].  

βsw               Swirler Blade Stagger Angle (Flat Blade) [°].  

 

Subscripts  

1                    At Compressor Inlet.  

3                    At Combustor Inlet. 

4                    At Combustor Outlet.  

f                     Fuel.  

Ref                Reference section.  

RZ                 Recirculation Zone.  

PZ                 Primary Zone.  

SZ                 Secondary Zone.  

DZ                 Dilution Zone.  

diff                 Diffuser.  

Lin                 Liner. 

sw                  Swirler. 

h                    Hole.  

1. Introduction: 

The oxidation reaction in a gas turbine combustor is to add the thermal energy to the system to power 

the turbine, Combustor must be designed to produce stable combustion for injected fuel and optimum 

generated heat within the limited combustor size available and over a maximal range of air/fuel ratios. The 

combustor is fed by high pressure air by the compressor therefor the combustor must preserve stable 

combustion despite high air flow rates. Combustion chambers are designed to mix and ignite the air and fuel 

mixture, and then mix in more added air to complete the combustion, [1]. This work present the experimental 

results for a variable holes diameter of the main injector of the combustor capable of achieving colorless low 

emission combustion. Colorless low emission oxidation reaction is characterized by reacting fuel with a high 

oxidizer temperature with high levels of turbulence producing a highly dispersed reaction zone. The highly 

dispersed reaction zone eliminates hot spots, the turbulence levels of the colorless oxidation reaction is so 

high that if operated in the current diffusion flame combustion technology, [2]. Swirl flows has been adopted 

to obtain internal recirculation rates in colorless combustion mode. The preference of LPG is chosen from 

this work for micro gas turbines have a wider scope of fuel. [3], examined experimentally flameless oxidation 

to reduce thermal NO-formation they concluded that there are  two approaches are concerned with the 

reduction of NOx emission. In this regard, the first approach deals with NOx abatement strategies regarding 

control of NOx formation via thermal mechanisms which avoid hot spot zones within the chamber. Another 

attempts to eliminate NOx after formation indicates the methods used in NOx abatement strategies. However 

most NOx technique are aimed at lowering the peak temperature and maintaining the residence time along 

with lower concentration of oxygen via dilution in high temperature zone (wunning and wunning 1997) these 

strategies can be classified in to three main categories : injection of diluent, exhaust gases clean-up and NOx 

formation prevention. These methods are crucial in the reduction of NOx formation by reducing the 

combustion chamber temperature (thermal NOx prevention), improve mixing or exhaust gases clean-up in 

which Nox is reduced after formation. [4]studied numerically the effect of syngas fuel mixture on the 

combustion of tubular combustor of gas turbine in gas turbine to shows the effects of the variability in fuel 

composition type and heating value on emission gases and combustion quality. The chemical composition of 

the used fuel was changed from methane to syngas fuel with hydrogen to carbon monoxide (H2/CO) volume 

ratio ranging from 0.63 to 2.36. Concluded changes in gas turbine quality with the same power generation 

when methane fuel is replace by syngas fuels. The gas temperature for the all type of used syngas reveal a 

lower gas temperature compared to the temperature of methane fuel, the gas temperature reduction depends 

on lower heating value and the combustible and non-combustible As a result some knowledge about 

utilization of Methane is carried out. [5], studied numerically the effects of the swirler  bled angle on the 

temperature profile at the outlet section of the combustor and the NO emissions in can- combustor. By using 

both PDF flamelet and LED models for methane fuel combustion models and k-ε as turbulent model, 

concluded that the 60° swirler bled angle geometry is giving less NO emission as the temperature at the exit 
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of combustion chamber is less as compared to 30° and 45° swirler angle geometry. So that for further 

numerical analysis 60° geometry is used. [6], studied numerically the of the turbulent intensity on the 

combustion in gas turbine tubular combustion chamber. For methane fuel with SST turbulent model and LED 

combustion model results showed that the turbulent intensity is high in the immediate vicinity of the ramp 

injector indicating a superior air-fuel mixing. A very high turbulent intensity indicates a superior air-fuel 

mixing. The high value of mass fraction of NO formed indicates an efficient combustion process. [7], studied 

numerically the effects of the Position of injected air holes in Primary and Secondary Zones on the exit 

temperature profile (pattern factor) on can combustor of Gas Turbine for Ethanol fuel, using the FLUENT 

package with SST adopted model for turbulent flow and Non-Premixed Combustion PDF flamlet model foe 

combustion  processes, Were varied air injection holes positions of the primary and secondary zone and fixed 

the location of the dilution zone holes. For this purpose each zone primary and secondary lengths are divided 

into four sub length: 25%, 50%, 75% and 100% of their original length dimensions. Concluded that the 

positioning of the Primary zone holes has a great influence on the pattern factor than the positioning of 

Secondary zone holes, pattern factor shows high sensitive to rows of primary holes displacements. For the 

Primary zone holes, a reasonable explanation is based on the fact that there is a strong revers flow zone in 

the first three quarters of the Primary zone length. This condition is observed when positioning the Primary 

zone holes row in downstream these ¾ of the primary zone length, in other words, thereby reducing the 

demand on the downstream zones in obtaining lower pattern factor. 

Design methodologies would be useful for researchers for preliminary design assessments of a gas 

turbine combustor. In this study, step by step design methodologies of tubular combustor have been carried.  

The effect of the main port fuel injection has also been studied experimentally where that the hole size of the 

main fuel injector has important role in the performance of combustor.  

 The overall contribution to knowledge of this study is development of combustor fuel injection 

methodologies with different variants. The other contribution to knowledge is related to novel combustors 

with a capability to produce low emissions.  

2. Combustor Preliminary design calculation: 

For the preliminary design of the combustor, a computational tool for Gas Turbine Combustor Design 

(GTCD) was used and implemented in mathcad15, developed by J. Saywers [2], H. Lefebvre [9]. With this 

tool, it is possible to get the preliminary design of tubular combustor. The GTCD enables the design of 

combustors fueled by LPG fuel, provided that changed the thermochemical parameters of temperature 

increase as a function of equivalence ratio for fuel adopted. Such a design methodology, in which GTCD is 

based, considers for the design of combustors, two criteria that must be met in all conditions of the operating 

envelope of the combustor: aerodynamic and thermochemical. Obtained for both criteria the reference area 

of the casing cross section (Aref), corresponding to the combustor in study. It is adopted in designing the 

reference area that meets both criteria above. Defined Aref, obtained the following calculations performed by 

the tool, the main ones being:  

- Diameter of the liner (DLin).   

- Longitudinal lengths of the primary zone (LPz), secondary zone (LSz) and dilution zone (LDz).  

- Dimensions of the diffuser (LDiff) and swirler diameter (DSw). 

- Diameter of primary zone holes (DPh), secondary zone hols (DSh) and dilution zone holes (DDh). 

 For the aerodynamic criterion if the combustor is dimensioned for a certain pressure loss, it will be 

large enough to accommodate the chemical reaction, J. Saywers [2]. The mixing process of fuel and air is 

extremely important. A good mix in the primary zone is essential for high burning rate and to minimize UHC 

and soot formation, H. Lefever [9] and S. Cohen [1]. A satisfactory mixture air-fuel inside the flame tube, 

and a relatively steady flow throughout the chamber, are aimed in the design of combustor, leading 

consequently to shorter combustors and lower pressure losses.  

By the aerodynamic criterion, preliminary casing and flame tube diameters are estimated using 

equations (1) and (2). 
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𝐴𝑟𝑒𝑓 = [
𝑅𝑎𝑖𝑟

2
. [

𝑚3.√𝑇3

𝑝3
]

2 

. [

∆𝑝3−4
𝑞𝑟𝑒𝑓

∆𝑝3−4
𝑝3

]]

0.5

                                                                                                      (1) 

𝐴𝑙𝑖𝑛

𝐴𝑟𝑒𝑓
=  0.65                                                                                                                                           (2) 

The aerodynamic phenomena play a vital role in the design and performance of the gas turbine 

combustion. As already mentioned, generally, if the aerodynamic design is satisfactory and the fuel injection 

system is suitable for the combustor, so do not expect operational problems. Using Mathcad package to 

programming the above equations 1 and 2 for the combustor inlet boundary conditions in table 1 to get the 

final preliminary design results in table 2. 

    

 

 

  

 

 

 

 

 

 

 

 

 

3. Combustor Geometry: 

 In this section, the final dimensions results of preliminary design in table 3 have drawn as geometry 

through employing AutoCAD 2016. The mainstream of the main injector line. However, the geometry that 

utilized in the experimental study as shown in Figure (1). 

 

 

 

     

 

 

 

 

 

 

 

Table: 1, inlet boundary condition 

Dref DLin 

LDz 

Variable Value Unite 

m•
3 0.6 Kg/s 

m•
f 0.0032 Kg/s 

P3 1.5E5 pa 

Pr 1.4 - 

T3 600    K 

V3 50 m/s 

 

Variable Value Unite 

Aref 0.0346 m2 

Alin 0.0224 m2 

Asw 8.329e-4 m2 

Dref 0.21 m 

Dlin 0.17 m 

Dsw 0.048 m 

Dsw,hub 0.025 m 

Lpz 0.1269 m 

Lsz 0.0846 m 

Ldz 0.225 m 

LDiff 0.038 m 

LDom 0.0223 m 

Dph 0.022 m 

Dsh 0.014 m 

DDh 0.032 m 

θDom 69.86 º 

θDiff 26.3 º 

 

Table: 2, preliminary design results.  

Figure: 1, final combustor geometry for the preliminary design results.  

LSz LPz LDiff 3 4 
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4. Experimantal Setup: 

The design and manufacturing of the test rig, consisting of micro gas turbine close loop system, was 

carried out at the Department of Mechanical Engineering, University of Technology, Exhaust gases 

turbocharger BBC type, exhaust plenum, exhaust gases recirculation (EGR) line, intake projection venture’s 

tube, oil lubrication system, ignition system, bearing cooling system, pitot-tube and other measurement 

device, the detail of the overall test rig setup is presented in figures: 2. 

 

 
 

5. Conventional main injector optimization: 

Related with the experimental steady-state test method and verification of the combustion with 

conventional main injector case for different injection holes size (0.5, 0.8, 1, 1.5 and 2 mm) with swirler of 

6 vanes, 60 degrees with the axial direction for each vane, [8] as shown in Figure: 3. In order to measure the 

centerline temperature along the combustor, outlet temperature profile, emissions gases and capturing flame 

by camera and combustion efficiency calculation. Both tests were achieved for the same primary, secondary 

and dilution holes geometry of inline arrangements, number of holes, and size, constant fuel pressure about 

2 bar and the range of injected fuel approximately about 0-3.2 g/s of LPG gases fuel. 

 

Figure 2. Details of engine parts. 
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6.Combustion efficiency calculation: 

The combustion efficiency determined through a measurement of UHC and CO for LPG gas fuel, the 

imperial relationship of the combustion efficiency, UHC and CO, emissions W. S. Y. Hung [8] is as follows: 

ηc = 1 − (UHCEI + 0.211 COEI)10−3                                                                                                     (3) 

Where ηc= combustion efficiency 

  UHCEI =emissions index of UHC, g/kg fuel  

  COEI = emission index of CO, g/kg fuel              

The relation between emission index and emission expressed for UHC and CO at ISO condition are 

follow as: 

UHCEI = 0.0288UHC                                                                                                                              (4)    

COEI = 0.0503CO                                                                                                                                    (5) 

Where UHC= emission of UHC in ppmv. 

CO= emission of CO in ppmv. 

7. Pattern factor calculation: 

 temperature profile at the exit section of the combustor defined as pattern factor represented the 

temperature homogeneity at the combustor outlet, H. Lefebver [9] as follows: 

  

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑚𝑎𝑥−𝑇4

𝑇4−𝑇3
   .                                                                                                        (6) 

8. Results: 

For 6 holes and 2mm injection hole diameter and for 3.2 g/s of fuel flow rate results shows very long 

complete yellow flame  approximately up to the total volume of combustor as shown in Figure: 4, a, b  due 

to the low velocity of the fuel flow with respect to the air velocity which directed by the swirlar and high 

equivalence ratio approximately rich flammability limit with bad mixing rate the turbine running limited with 

high addle speed approximately 8500 RPM due to effect of yellow flame at the low fuel mass flow rate low 

speed of fuel flow which caused imperfect mixing  (incomplete combustion, low range of enthalpy released) 

for this case . Low range of UHC about 60 ppmv, O2 = 0.16 % and high range of CO = 0.0532 % and high 

rang of soot generation inside the combustion chamber as shown in Figure: 5. Desirable pattern factor and 

high average outlet temperature about 883 k due to the distributed long yellow flame which provide 

temperature homogeneity. Ultimate minimum power generation about 0.53 kw, High S.F.C about 21.5 

Figure: 3. Swirler with the variable Main injector holes size. 
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kg/kwh  low combustion efficiency due to the generated soot, difficult in starting only by assisting of a 

secondary line of fuel injection. 

 

 

 

 

For 6 holes and 1.5mm injection hole diameter with opened dome holes and for 3.2 g/s of fuel flow 

rate results shows long yellow with blue base flame  limited approximately up to the total length of secondary 

zone as presented in Figure: 6, due to the low velocity of the fuel flow with respect to the air velocity which 

directed by the swirlar which provide bad mixing and with high addle speed approximately 7500 RPM due 

to effect of yellow flame at the low fuel mass flow rate low speed of fuel flow which caused imperfect mixing  

(incomplete combustion) for this case and ultimate maximum speed about 10000 RPM due to effects of 

yellow flame (incomplete fuel heating release, soot generation effects). desirable pattern factor < 0.2 and high 

average outlet temperature about 854 k due to the distributed long yellow flame long flame which provides 

temperature homogeneity Low power generation about 0.82 kw, High S.F.C about 14.1kg/kwh, difficult to 

start and low responsive to acceleration. Figure: 7, shows the temperature distribution profile along the center 

line of combustor the outcome reveals that there is slow decreasing in temperature along the combustor up 

to the dilution holes due to the effects of slow speed of the turbine which caused decreasing in primary and 

secondary holes effectiveness and then there is sharp decreasing in temperature, due to effectiveness of the 

dilution holes. 

 

  

 

 

 

 

  

Figure 6 a, b Photographs of flame in primary zone 

and secondary zone respectively for 1.5mm holes 

diameter. 

a-Pz b-Sz 

Figure: 7, temperature distribution profile 

along the center line of the combustion 

chamber. 

 

Figure 4 a, b Photographs of flame in primary 

zone and secondary zone respectively for 2mm 

holes diameter. 

Figure: 5, generated soot inside the 

combustion chamber. 
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For 6 holes and 1mm injection hole diameter and for 3.2 g/s of max fuel flow rate results shows 

intermediate length  blue flame  limited approximately up to the total distance of secondary zone as shown 

in Figure: 8, due to the high velocity of the fuel flow with respect to the air velocity which directed by the 

swirlar which provide good mixing and with intermediate addle speed approximately 6500 RPM due to 

appearing of yellow flame at the low fuel mass flow rate low speed of fuel flow which caused (imperfect 

mixing, incomplete combustion) for the addle speed of  this case and ultimate maximum speed about 13600 

RPM. For no loaded turbine max speed running turbine and Figure: 9, shows the variation of temperature 

distribution profile along the combustor for different fuel mass flow rate, the outcome reveals that there is 

sharp decreasing in temperature along the center line of the  combustor due to focusing of flame in primary 

zone and the main role of the primary holes cooling effect on the generated heat also the effect of free loaded 

turbine caused increasing in turbine speed, decreasing in equivalence ratio with respect to the injected fuel 

as shown in figure: 10, for combustor performance Figure: 11, shows the variation of pattern factor and 

average outlet temperature with equivalence ratio for no load max speed running  the  outcome reveals 

Desirable and decreasing in pattern factor due to the flame shortening which provide enough time and 

distance for temperature homogeneity and increase in average outlet temperature  due to increases of released 

heat with respect to the air flow rate. Figure: 12, shows the variation of combustion efficiency with 

equivalence ratio the results shows increasing in combustion efficiency due to decreasing in emission gases 

CO and UHC as shown in figure: 13, High power generation about 3.43 kW, low S.F.C about 3.49 kg/kWh, 

easy to start high responsive to acceleration without S.F.I assisting.  

 

 

 

 

 

 

 

 

 

 

Figure: 10-engine speed and equivalence ratio for no 

load max speed running. 

 

Figure: 11, Pattern factor and average outlet 

temperature for no load max speed running. 

 

Figure: 9, temperature distribution profile 

along the center line of the combustion 

chamber. 

 

Figure: 8, Photographs of flame in primary 

zone and secondary zone respectively for 1mm 

holes diameter. 
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For 6 holes and 0.8mm injection hole diameter and 2.1 g/s of max fuel flow rate results shows short 

blue flame limited approximately to the end of the primary zone as shown in Figure: 14, due to the choked 

flow of the fuel with respect to the air velocity which directed by the swirlar which provide perfect mixing 

and dark blue flame in secondary zone as shown in figure: 14, b, with low addle speed approximately 5500 

RPM due to completely absence of the yellow flame (complete combustion) and ultimate maximum speed 

about 6800 RPM because of the limitation in fuel injection flow rate due to the chocking in fuel flow stream. 

Desirable pattern factor < 0.2 due to the flame shortening which provide sufficient time and distance for 

temperature homogeneity and high outlet temperature about 900 k due low running speed which effect on 

dilution holes effectiveness. Low power generation about 0.8 kW, high S.F.C about13.35 kg/kwh low 

combustion efficiency about 0.992, difficult to start and low responsive to acceleration because of fuel 

choking in main injector while starting by assisting of S.F.I line. 

For 6 holes and 0.5mm injection hole diameter (main injector) and 1.2 g/s of max fuel flow rate results 

shows very short blue flame limited approximately to the third quarter of the primary zone as shown in 

Figure: 15, due to the chocked flow of fuel with respect to the air velocity which directed by the swirlar which 

provide perfect lean mixture, very dark secondary zone as shown in figure: 15, b, with constant speed 

approximately 4500 RPM due to completely absence of the yellow flame, desirable pattern factor < 0.2 due 

to the flame shortening which provide sufficient time and distance for temperature homogeneity and high 

outlet temperature about 920 k  due low running speed which effect on dilution holes effectiveness . Low 

power generation about 0.32 kW, high S.F.C about 17kg/kWh, difficult to start. 

 

 

 

Main injector optimization for colorless combustion consideration (high efficient combustion) for 

3.2g/s of fuel flow rate results shows that the main injectors holes diameter 1mm is more efficient for this 

consideration where figure: 16 shows the effects of the fuel choking with main injector of   0.5 and 0.8 mm 

caused low running speed low air flow rate and reduction in primary and secondary holes effectiveness which 

caused increasing in outlet temperature while the same behavior with main injector of 1.5 and 2mm  and the 

effects of a long flame with soot generation for 1.5 and 2 mm of holes diameter which caused soot generation 

and high equivalence ratio caused low running speed and increasing in outlet temperature and pattern factor, 

Figure: 12, Combustion efficiency with 

equivalence ratio. 

Figure: 13, Emission gases with equivalence 

ration for no load max speed running. 
 

Figure: 14, Photographs of flame in primary 

zone and secondary zone respectively for 0.8 

mm diameter. 

Figure: 15, Photographs of flame in primary 

zone and secondary zone respectively for 0.5mm 

diameter. 
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while for engine performance figure: 17, shows the same behavior where there is decreasing in specific fuel 

consumption and increasing in power generation up to 1mm injection holes diameter because of vanishes of 

choking effects and then decreasing in power generation and increasing in specific fuel consumption due to 

increasing in soot generation and appearing of yellow flame which represents incomplete combustion. 

 

 

 

9. Conclusions: 

In this paper a colorless flame high-performance combustion (volumetric oxidation reaction) by 

experimental investigation using optimization of volumetric reaction phenomenon by using multi-size of fuel 

injection holes diameter to burned gaseous fuel (LPG). It is found that to achieve colorless flame combustion 

is heavily dependent on combustor design, the method of fuel injection. Following are the conclusions of this 

study based on the objectives. 

1. The colorless flame combustion mode occurred only for a limited range of conditions at fuel lean 

conditions and high airflow rates.  

2. The colorless flame combustor achieved extremely low NO, CO and UHC when the distributed flame was 

formed (distribution of hotspot).  

3. High fuel mass flow rates (choking range) with respect to air mass flow rate helped in promoting good 

mixing and strong reaction resulting in a high temperature field, thus higher UHC and CO level when 

compared with lower flow rate at the same equivalence ratio. However, at the same flame temperature, 

high airflow rate formed less UHC and CO because of the more evenly distributed flame. 

4. Large combustor exhaust contraction accelerated the local flow and reduced the residence time necessary 

for complete burning of UHC and CO oxidation. 

5. The present design optimization for multi-size of the main fuel injection colorless combustor can achieve 

low UHC, NOx and CO emissions with low-pressure loss. 
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