
Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

Journal of University of Babylon for Engineering Sciences by University of Babylon is licensed under

a Creative Commons Attribution 4.0 International License.

181

Optimum Path Planning for Multi Mobile Robots with Speed of
Work Achievement as Constrain

Bashra Kadhim Oleiwi

Control and System Engineering Department, University of Technology,Baghdad, Iraq.

bushrakad@yahoo.com

Submission date:- 12/1/2011 Acceptance date:- 17/1/2011 Publication date:- 2/12/2018

Abstract

This paper presents optimum path planning for multi mobile robots that move between an initial

point toward a target point then back to the initial point in a way that avoid collision without heavily slow

down robots speed. The work system designs for taking into consideration robots velocities as well as time

that robots will spend it in their target points, since both could be variant for all robots. In order to achieve

the work objectives, time and space method combined with sequential entry method are used to design

robots motion. In addition, two priority levels are used of carefully selected priorities to avoid collision

between robots; node level priority and robot level priority. In node level priority, the priority gives to

robots in a manner that minimize the number of over all system collisions. While in robot level priority the

priority gives to robots that cause faster speed for work achievement. The work is tested with different

number of robots and different types of maps, and the algorithm proved its efficiency in finding the

optimum solution regarding system performance for each robot in the collision points. The proposed

algorithm is implemented using VBA programming language.

Keywords: - Robut, Optimum poth, Planning, Multimobile robot.

Introduction

Many missions in autonomous mobile-robot systems depend on navigating in a known or an

unknown environment and performing some tasks, like landmine exploration, post-office automation,

cleaning, transporting load from one node to another, or assisting rescue after disasters. A multi-robot

cooperative system appears to be more effective and adaptive to accomplish various such kinds of complex

tasks, relative to a single robot approach, and most of these missions may be performed more efficiently by

a collaboratively working multi-robot team [1].

Problems of multi-agent robot systems control have got significant importance. Each multi-agent

robot system has some transport subsystem, which consists of several mobile robots. The problem of

controlling such mobile robots group can be divided into two main parts: [2]

- Task decomposition into subtasks, and their optimal distribution between separate robots in the group.

- Path planning, control and movement correction for each mobile robot.

The existing methods for solving the problem of path planning for multiple robots can be divided

into two categories [3].

- Centralized approach in which the configuration spaces of the individual robots are combined into one

composite configuration space which is then searched for a path for the whole composite system.

- Decoupled approach that first computes separate paths for the individual robots and then resolves

possible conflicts of the generated paths. Techniques of this type assign priorities to the individual

robots and compute the paths of the robots based on the order implied by these priorities.

http://creativecommons.org/licenses/by/4.0/
mailto:bushrakad@yahoo.com

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 182

In this work, we introduce new approach to plan multi mobile robots paths combined with features

of previously known approaches. We assume that the environment is known and to assure each robot

achieve its work, it should travel from a user defined initial point towards a user defined target point then

the robot should go back to its initial place.

Many researchers who proposed solutions for path planning assumes that robots have the same

velocities. Robot velocity defines the moment and the node where the robot will have collision and this is

very important when planning paths for multi mobile robots as neglecting robot velocities will produce a

plan that does not represent the actual robot behavior. All researchers who have researched in path planning

problem neglect the fact that robots tasks may not be similar and that means robots may need different

times to achieve their tasks in their target node. This would have significant effect on the path plan because

the collision points in the return path will differs from that of the original path, which mean re-planning the

path. Moreover most researchers who introduce solutions for path plan problem never discuss the effect of

their solution on robots travel speed and the over all system performance [4]. In real world robots are used

as multi agents systems to speed up work achievement, however all available solutions (including the one

we present here) will slow down robots in order to avoid possible collisions. Also the effect of robots

slowing down on creating new collision points in the system was never discussed before. Finally many

researchers that use decouple planning method for path plan either used fixed priority schemes to solve

robots conflicts or they use random priority scheme for the same purpose.

In this work we plan for the optimum solution not only form optimal-path point of view, but also

from the over all effect of the proposed robot path on the total number of collisions and robots speed. We

take the fact that robots speed may be variant into consideration when planning robots path. We also take

into consideration the fact that robots tasks may not be the same in their target node. Decouple planning is

used to produce the path plan with two level of priorities. In each level, robot priority is carefully selected

to serve our goal in maintaining system performance.

Related Work

In [5] the robot path is defined as the path through space-time with the best score as determined by a

set of user-defined evaluation functions. Their algorithm takes into account the capabilities of the robot

executing generated plans, traverse-ability of space, and interactions with both predictable and

unpredictable dynamic objects.

In [2] the graph edges weight is dynamically changed for path correction and collision avoidance.

Their algorithm applies changes of robots' paths and speeds to avoid collisions.

[3] presents a method for finding solvable priority schemes for prioritized and decoupled planning

techniques. Their algorithm is guided by constraints generated from the task specification.

The problem in [4] is decomposed into two modules: path plan and velocity plan. Optimization is

achieved by minimizing a weighted sum of the most expensive time for robot to reach its goal and the total

idling time of all robots.

[6] avoids the computational complexity of generating a denser search area by employing a non-

uniform sampling density that increased in complex areas, leaving simple areas with lower resolution

density, hence directing computational resources towards the complex areas.

In [1] a vehicle routing problem-based approach is presented to construct non-intersecting routes for

the members of a mobile robot team. Their path takes into consideration robots capacity when designing

tours for each robot.

[7] Present an algorithm for motion planning of multiple robots amongst dynamic obstacles. Their

approach is based on a roadmap representation that uses deformable links and dynamically retracts to

capture the connectivity of the free space.

[8] Uses genetic algorithms to help a controllable mobile robot to find an optimal path between a

starting and ending point in a grid environment.

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 183

[9] solves path plan problem for robots in bi-connected environment with only two free nodes by

moving a robot to a node if there is no robot in that node and no other robot is simultaneously entering that

node.

The Proposed Algorithm

The proposed algorithm take into consideration robots velocity and robots needed time in their

targets point to finalize their work. Both could be referred to as work achievement time, as robots speed

defines the time needed for each robot to reach its target and to return back to its initial position, and by

adding the work time for each robot in its target point to this time we will get the total time needed for each

robot to achieve its work. We assume that each robot is positioned on its initial position. We assume also

that each robot should visit one target position and return to its initial position in order to consider that the

robot finalize its work. The robot should return to its initial position either to recharge, or to move a load

between the two points or etc.

Work achievement time will have a heavy effect on the time that the collision will occur in the path

plan of each robot. Consider Fig (1) which shows two robots in their initial position and trying to pass

through a door to reach their target position. If robots speed are equal, collision will occur on P1 as shown

in Table (1). If robot one is faster than robot two, the collision will occur at the return path of robot one not

at the forward path as illustrated in Table (2). If robot one need more time to achieve its goal and it stayed

in its target position for a long time that enables robot two to pass P1, collision will not occur neither in the

forward path nor in the return path, this is illustrated in Table(3).

Fig (1): Two robots trying to pass through one door

Table (1): Robot one velocity equals to Robot two velocity

P3 P2 P1 PI(2) PI(1) Time/Position

 R2 R1 t1

R1, R2

Collusion t2

R2 R1 t3

R1, R2

Collusion t4

 R2 R1 t5

P1

P3 P2

2 1

2 1

P1

P3 P2

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 184

Table (2): Robot one velocity larger than Robot two velocity

P3 P2 P1 PI(2) PI(1) Time/Position

 R2 R1 t1

 R1 R2 t2

 R1 R2 t3

R1, R2,

Collusion t4

 R2 R1 t5

Table (3): Robot one work time larger than Robot two-work time

P3 P2 P1 PI(2) PI(1) Time/Position

 R2 R1 t1

 R1 R2 t2

 R1 R2 t3

 R1 R2 t4

 R2 R1 t5

 R2 R1 t6

The algorithm starts like other decoupling planning algorithms by clustering nodes and planning

shortest paths of each robot. The clustering approach used in our algorithm is specially designed for the

algorithm as it takes robots steps per time as the measure of node dimensions. Robots steps will define the

space that the robot will occupy per time unit. Measurements units (like mm, cm, or m for distance or sec,

min, or hour for time) depend on robots speeds also. The proposed algorithm use Dijkstra (which is one of

the oldest and efficient approaches in path planning) to plan the shortest path for each robot. Then the

algorithm add robots speeds and robots needed time to do their work into the path plan to produce the

actual time/space existence of each robot. The algorithm use sequential robot entry method to solve these

conflicts, i.e. to solve a conflict between two robots one robot will occupy the node while the other robot

will wait till the node is free again to be able to occupy it. In order to decide which robot should pass and

which robot should wait the algorithm use two levels of priorities between robots in a way that maintain

system performance. In the first level (the node level), the algorithm gives lower priority to robots that will

cause more collisions to occur in the system if they pass first. This will ensures that the over all speed of

work achievement of all robots is optimum as more conflicts means delaying more robots and dropping

down system performance. In the second level (robot level), the algorithm gives higher priority to robots

that will pass the node faster as slow robots will slow down fast robots and drop down system performance

also. The combination of the two levels will produce the optimum path plan for each robot regarding

system performance.

The Proposed Algorithm in Detailed

The proposed algorithm consists of the flowing steps as shown in Fig (2):

- Manual data entry

The algorithm starts by inputting robots main information including: number of robots in the graph,

initial and target position for each robot, robots velocity, and robots needed time in the target node to

finalize their job. In addition, the graph will be entered manually; obstacles such as walls, tables, etc. will

be defined manually also.

- Clustering nodes

The nodes of the system will be clustered in a way suitable for the algorithm. Each node will

represent one time step. For example if robot one velocity is 1 cm/sec and robot two velocity is 2 cm/sec,

the result node length (and height) will be 0.5 cm. Robot one will pass 1 centimeter each second, robot two

will pass 2 centimeter each second. For a collusion not to occur, the minimum time that should be taken

into consideration in 0.5 second where robot two pass the 1 cm length, put robot two will pass 0.5 cm

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 185

during this time, so the minimum node length should be 0.5 cm. The general equation for node clustering

is:

NL=NH=Min(1/VR(i))

Where NL is the node length, NH is the node height, Min is the minimum function, VR velocity of

robot i, where i from 1 to M, M is the number of robots.

Robots step per time will defines the position of each robot in the time, for the above example robots

step per time will be 2 steps per second (where each step is 0.5 cm as we said and the robot velocity is

equal to 1 cm/sec) for the first robot and 4 step per second for the second robot. The general equation of

robots steps per time is:

TR(i)=VR/NL

Where TR is the time step for robot i, where i from 1 to M.

One should note that the limitation of this clustering method is that the node size will be very small

if two conditioned occurred: first number of robots is very large, and second the speed differences between

robots is large also. If the two conditions occurred, the computation time of the algorithm will increase due

to the increase of number of nodes in the system.

Start

Cluster Nodes and find Number of Nodes N.

Find Optimum Path Plan for each robot

Construct Movement List for each robot taking robots speed

and work time into consideration.

Input all Robots Information and Planet

Information

Find collisions between all robots.

i=1

Solve Robot i Collision

i= i+1

i=M?

No
Yes

End

Fig (2): Flowchart of the Proposed Algorithm

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 186

- Constructing Robots Paths

The initial path for each robot will be constructed using Dijkstra algorithm that finds the shortest

path of each robot from its initial position to its target position.

After that, the actual time/space for each robot will be constructed as follows:

1. Finding the Forward Path

The forward path is the path from the initial position to the target position. Robots time step will be

considered during constructing this path. For example if robot one velocity is 2 cm/sec and robot two

velocity is 1 cm/sec, the result will be that robot one will pass each node by one time step, while robot two

will need two time step to pass each node. This will take robots speed into consideration when constructing

the path, also it will take robots availability within time and space for each robot in each step. Path of each

robot will be stored in a list:

Path(i, t) = n

Where i is the robot number, i is from 1 to M, t is the momentum time, n is the node number, n is

from 1 to N, and N is the total number of nodes in the system.

2. Adding work time

After constructing the forward path, the time needed for each robot in its target position will be

added. This is very important as other robots may need to pass through the same node while the robot is

still working in that node. Also it is important as it will define the moment that each robot will starts

moving back towards its target position.

3. Defining the return path

The return path is the path that robot will pass from its target node back to its initial node. We

assume that each robot will use the same nodes obtained using Dijkstra to construct the return path but in

backward order. Velocity of each robot will be taken into consideration also when constructing the return

path.

- Finding Collisions

The algorithm now search for collision between robots. Collision is defined as two robots try to

occupy the same node at the same time. Collisions are stored in a list for each robot as follows:

Collision (i, j, t) = n

Where i and j are robots number, t is the momentum time that collision will occur, n is the node

where collision will occur.

- Solving Collisions

Solving collision between two robots are done in two levels.

1. Level One – Prioritizing Robots in Node Level

In node stage the algorithm checks solutions for each robots that does not effect the over all system

collisions. The stage starts by

- Take two robots that have collision as shown in Fig (3).

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 187

Fig (3): Solve Robot i Collision - Level One Priority – Node Level

List1 increase performance

more than List2?

Yes

No

Yes
List2 increase performance

more than List1?

No

Star

t

Give Robot j high priority Make Robot j

occupy the node and Robot i wait in List2

Find Collision information of Robot i: Robot j,

Time t, and Node n.

Give Robot i high priority, Make Robot i

occupy the node and Robot j wait in List1

1

Yes

List1 have negative impact on

system collision?

List2 have negative impact on

system collision?

No

No

Yes

List1&2 have negative impact

on system collision?

Yes

No

1

No

Yes

Give Robot j high priority

Make Robot j occupy the

node and Robot i wait in

List1&2

Give Robot i high priority

Make Robot i occupy the

node and Robot j wait in

List1&2

More

Collisions

in Robot i?
2

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 188

- Give higher priority to the first robot and construct two temporary movement lists for both robots in a

way that makes this robot occupy the node while making the second robot wait. We will refer to the two

temporary lists in this group as movement group one (or simply List1).

- Give higher priority to the second robot and construct two temporary movement lists for both robots

that makes the second robot occupy the node while making the first robot wait. We will refer to the two

temporary lists in this group as movement group two (or simply List2).

- If one of the two temporary movement groups (List1 or List2) has negative impact on previously

planned robots, the algorithm will not use this movement group. In other words, if one of the movement

groups caused collisions to robots that their optimum path was already planned, the algorithm will

neglect this movement.

- If one of the two temporary movement groups cause increase in the over all system collisions, the

algorithm will not use this movement group. i.e. if one of the movement groups caused more collisions

between robots on hand or other robots in the system, the algorithm will neglect this movement.

- If one of the two temporary movement groups cause noticeable decrease in the over all system

collisions, the algorithm will use this movement. Normally one may assume that solving one collision

will decrease the number of total system collision by one, but actually this is not the case as one of the

solutions may cause to solve all collisions in the system or at least to solve many other collisions. So if

the solution being considered result in less system collisions than the other solution, the algorithm

choose this solution.

The above steps will be done for all nodes that the two considered robots have collision on. Some

nodes will be chosen using the above criteria, for other nodes, i.e. nodes that have the same impact on the

system performance (either they both have the same negative impact on the over all system collisions, or

they both have the same positive impact on the over all system collisions), the selection will be done in

level two.

2. Level Two – Prioritizing Robots in Robot Level

The result of stage one will be two temporary movement groups that for some nodes the solution is

equal in both groups, i.e. one robot gets the higher priority in that node on the two groups. While in other

nodes the first robot get higher priority in the first group, while the second robot get higher priority in the

second group. Now the algorithm selects between the two groups depending on the group that cause faster

speed for work achievement for both robots. As the two robots have different speeds to move and to work,

giving priority to one robot may slow down the over all achievement time of the two robots more than if we

give the priority to the other robot. The algorithm will choose the group that enables both robots to achieve

their work faster as follows:

T1 = W(i) + W(j) in List1

T2 = W(i) + W(j) in List2

If T1 <= T2 Then Select List1

Else Select List2

Where T1 and T2 are the summation of work achievement time for robot i and robot j in the

temporary movement lists one and two respectively as shown in Fig (4).

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 189

Results and Discussions

In this section, we will discuss the proposed algorithm by discussing several study cases.

Case Study One: Door problem

Let discuss the situation shown in Fig (5). The planet consists of eight nodes N0 – N8, N3 and N5

contains obstacles. Robot one R1 is positioned in N0 and its target is N6, while robot two R2 is positioned

in N2 and its target is N8.

N 2 N 1 N 0

N 5 N 4 N 3

N 8 N 7 N 6

R1

T 1

R2

T 2

Fig (5): Case Study One – Door Problem

Fig (4): Solve Robot i Collision - Level Two Priority – Robots Level

TW1<=TW2?

2

Yes No

In List 1 find TW1 = Work Achievement Time for Robots i

+ Work Achievement Time for Robots j

In List 2 find TW2 = Work Achievement Time for Robots i

+ Work Achievement Time for Robots j

Select List1 to be the path plan

for Robots i and j

Select List2 to be the path plan

for Robots i and j

End

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 190

Case 1:

VR1 = VR2 = 1 time step and TW1 = TW2 = 0

Where V is the velocity of R1 and R2, TW is the time needed for R1 and R2 to achieve their goal in

their target node.

The algorithm will construct both robots path to be as shown in Table (4). Robot one will pass

nodes 0, 1, 4, 7, and 6 in the forward path, and will pass nodes 6, 7, 4, 1, and 0 in the return path. Note that

node 6 was repeated as robot velocity is taken into consideration, robot need time to turn back in the node

and the turning back movement is done by a velocity equal to the robot movement velocity. R2 will pass

nodes 2, 1, 4, 7, and 8 in the forward path, and the same nodes but in opposite order in the return path. The

two robots will have collision on node 1,4, and 7 in both the forward and the return path. The solution

found by the proposed algorithm is shown in Table (4).

First the algorithm choose to delay R1 on node 0 in the Robot level as delaying R1 in node 0 or

delaying R2 in node 2 have the same impact on node level (both solve all collisions between the two

robots) and the same impact in the robot level (both produce the same achievement time).

Table (4): Door problem – Case 1

Path Plan for Case One

T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 1 4 7 6 6 7 4 1 0 R1

2 1 4 7 8 8 7 4 1 2 R2

Final Path Plan for Case One

T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 1 4 7 6 6 7 4 1 0 0 R1

 2 1 4 7 8 8 7 4 1 2 R2

Case 2:

VR1 > VR2 and TW1 = TW2 = 0

The algorithm will construct both robots path to be as shown in Table (5). Now the two robots has

one collision only at node 1 at time 3, and that demonstrate the effect of velocity variation on robots

collisions. The solution found by the proposed algorithm is shown in Table (5). The algorithm will choose

to delay R2 on node 2 in node level as R1 is already occupying the node and in order to free node 0 either

R1 should return and wait on node 0 for three time step and cause three more collisions to occur with R2, or

putting R2 on hold one time step and cause one more collision to occur at node 7 at time 12. The second

collision at node 7 is solved by delaying R1 in the robot level for one time step as delaying R2 means

putting R2 on hold for three time step.

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 191

Table (5): Door problem – Case 2

Path Plan for Case Two

T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

4 4 7 7 6 6 6 6 7 7 4 4 1 1 0 0 R1

8 8 8 8 7 7 7 4 4 4 1 1 1 2 2 2 R2

Case 3: VR1 = VR2 and TW1 > TW2

The algorithm will construct both robots paths to be as shown in Table (6) where the two robots has

three collisions at nodes 1, 4, and 7 in the forward path only, the return path has no collision at all as a

result of adding robot R1 work time into the path plan. The solution found by the proposed algorithm is

shown in Table (6). The algorithm choose to delay R1 at node 0 in the node level as it will solve all

collisions while delaying R2 at node 2 will create 3 more collisions and this demonstrate the difference in

the decision compared to case one. In case one putting R1 or R2 on hold in time 1 does not have any effect

on system performance, while in this case it does. If robots priority was chosen randomly or chosen based

on a fixed scheme in a manner that gives higher priority to R1, the solution will solve the conflict in node 1

at time 1 by delaying R2, but at the same time it will creates three more conflict at nodes 7, 4, and 1 in the

return path.

Table (6): Door problem – Case 3

Path Plan for Case Three

T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 1 4 7 6 6 6 7 4 1 0 R1

 2 1 4 7 8 8 7 4 1 2 R2

Final Path Plan for Case Three

T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 1 4 7 6 6 6 7 4 1 0 0 R1

 2 1 4 7 8 8 7 4 1 2 R2

Case 4: VR1 > VR2 and TW1 > TW2

The algorithm will construct both robots path to be as shown in Table (7) where the two robots has

one collision at node 1 at time 3. The solution found by the proposed algorithm is shown in Table (7).

Compared to case two, the first solution in case two is the same solution chosen by the algorithm here but

in case two we noticed that another collision will occur in the system while here no more collations will

occur as a result of increasing work time of robot one.

Final Path Plan for Case Two

T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

4 7 7 6 6 6 6 6 7 7 4 4 1 1 0 0 R1

8 8 8 7 7 7 4 4 4 1 1 1 2 2 2 2 R2

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 192

Table (7): Door problem – Case 4

T16 T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

7 7 6 6 6 6 6 6 6 7 7 4 4 1 1 0 0 R1

8 8 8 8 8 7 7 7 4 4 4 1 1 1 2 2 2 R2

T16 T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

7 7 6 6 6 6 6 6 6 7 7 4 4 1 1 0 0 R1

8 8 8 8 7 7 7 4 4 4 1 1 1 2 2 2 2 R2

Case 5: VR1 > VR2 and TW1 < TW2

The algorithm will construct both robots path to be as shown in Table (8) where the two robots has

one collision at node 7 at time 6. The solution found by the proposed algorithm is shown in Table (8). The

algorithm will choose to delay R2 on node 4 for one time step on the robot level as it is faster to achieve

work for both robots compared to delaying R1 that will require that R1 waits for two time step. The

alternative solution would be delaying R1 for two time steps in node 6.

Table (8): Door problem – Case 4

Path Plan for Case Five

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

 0 1 4 7 6 6 7 4 1 0 R1

8 8 8 8 8 7 7 4 4 1 1 2 2 R2

Final Path Plan for Case Five

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

 0 1 4 7 6 6 7 4 1 0 R1

8 8 8 8 7 7 4 4 4 1 1 2 2 R2

Notice that in time T=T6 and T=T7 a swap will occur between the two robots, i.e. the two robots

will swap their location R1 that occupy node 7 will occupy node 4 and R2 that occupy node 4 will occupy

node 7. This is the only case that our algorithm cannot solve because in order to solve a swap one of the

two robots should wait in an earlier point in the path plan i.e. one of the robots should clear the path to the

other robot not only clear a step. This will require that the algorithm check for swaps in the Find collisions

part of the algorithm, then to continue searching for swaps each time a collision solved. We preferred in

this version of our work to keep this situation unsolved, and to solve it in detailed in another work. Note

also, this problem could be solved in finding a temporary.

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 193

Case Study Two: Cross Road problem

Lets discuss the situation shown in Fig (6). The map consists of twenty five nodes N0 – N24, where

N1, N6, N8 and N9 contains obstacles. Robot one R1 is positioned in N0 and its target is N19, while robot

two R2 is positioned in N4 and its target is N22.

N4 N3 N2 N1 N0

N9 N8 N7 N6 N5

N14 N13 N12 N11 N10

N19 N18 N17 N16 N15

N24 N23 N22 N21 N20

Case 1: VR1 = VR2 = 1 time step and TW1 = TW2 = 0

Where V is the velocity of R1 and R2, TW is the time needed for R1 and R2 to achieve their goal in

their target node.

The algorithm will construct both robots path to be as shown in Table (9). The two robots will have

collision on node 12 at time 4. The solution found by the proposed algorithm is shown in Table (9). The

algorithm choose to delay R1 on node 11 on the robot level as both solution (delaying R1 or R2) have the

same impact on the node level and on the robot level.

Table (9): Cross Road Problem – Case 1

Path Plan for Case One

T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 5 10 11 12 13 14 19 19 14 13 12 11 10 5 0 R1

 4 3 2 7 12 17 22 22 17 12 7 2 3 4 R2

Final Path Plan for Case One

T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

5 10 11 12 13 14 19 19 14 13 12 11 11 10 5 0 R1

 4 3 2 7 12 17 22 22 17 12 7 2 3 4 R2

R1

T 1

R2

T 2

Fig (6): Case Study Two – Cross Road Problem

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 194

Case 2:

VR1 > VR2 and TW1 = TW2 = 0

When robot one velocity is larger than robot two velocity, in many cases the collision will not occur

anymore as the two robots have only one node in common. However we took here an example where the

speed of R1 and R2 will cause them to have collision again. The algorithm will construct both robots path

to be as shown in Table (10). The solution found by the proposed algorithm is shown in Table (10). The

algorithm will choose to delay R1 on node 13 for three time steps on the node level as R2 is already

occupying the node, and delaying R2 requires 5 time steps.

Table(10): Cross Road Problem – Case 2

Path Plan for Case Two

T2

5

T2

4

T2

3

T2

2

T2

1

T2

0

T1

9

T1

8

T1

7

T1

6

T1

5

T1

4

T1

3

T1

2

T1

1

11 11 12 12 13 13 14 14 19 19 19 19 14 14 13 R1

17 12 12 12 12 12 7 7 7 7 7 2 2 2 2 R2

Final Path Plan for Case Two

T2

5
T24 T23 T22 T21 T20 T19 T18 T17 T16 T15 T14 T13 T12 T11

12 13 13 13 13 13 14 14 19 19 19 19 14 14 13 R1

17 12 12 12 12 12 7 7 7 7 7 2 2 2 2 R2

Case 3:VR1 = VR2 and TW1 < TW2

The algorithm will construct both robots paths to be as shown in Table (11) where the two robots

has two collisions at node 12 at time 4 and 11 respective. The solution found by the proposed algorithm is

shown in Table (11). The algorithm choose to delay R1 at node 0 in the robot level as both solution have

the same impact on node and robot level.

Table (11): Cross Road Problem – Case 3

Path Plan for Case Three

T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 5 10 11 12 13 14 19 19 14 13 12 11 10 5 0 R1

4 3 2 7 12 17 22 22 22 22 17 12 7 2 3 4 R2

Final Path Plan for Case Three

T16 T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

0 5 10 11 12 13 14 19 19 14 13 12 11 11 10 5 0 R1

 4 3 2 7 12 17 22 22 22 22 17 12 7 2 3 4 R2

Conclusion and future work

In this paper, optimum path planning has been presented for multiple mobile robots. The work uses

decoupled planning in time and space and sequential robot entry according to selective priority schemes to

solve collisions between robots. The work takes into consideration robots with variant velocities and

variant time to achieve their goal in their target node which both referred to as work achievement time.

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 195

Discussion result proves the effect of work achievement time on the time and space where collision will

occur. Also it proves the effect of work achievement time on the priority that will be assigned to each robot

on the collision nodes and the importance to include work achievement time as a constraint when planning

robots paths. In this work, two levels of priority are used to maintain system performance. The first priority

level maintain the over all system collisions by giving high priorities to robots that does not increase the

total number of system collisions, while the second level of priority maintain robots work achievement time

by giving priorities to robots in a manner that does not slow down the over all system speed. The work is

tested with different number of robots and different types of maps, and the algorithm proved its efficiency

in finding the optimum solution regarding system performance for each robot in the collision points. Robots

with repetitive work was not studied too often in path planning. In this study we noticed that robot with

repetitive work will have collisions in the second work cycle differs from that of the first cycle (work cycle

is the time from initial node to target node and back to initial node). We also noticed that after a predefined

time (that lies in the 1st, 2nd, or etc.) of work cycle, collision will be fixed in the same nodes. We extend

this work to briefly study this phenomenon. The work extension will take into consideration the swap

problem, and the future proposed work is to find an optimum point where one of the two robots should wait

on till the second robot pass the swap area.

CONFLICT OF INTERESTS.

- There are no conflicts of interest.

References

[1] Osman PARLAKTUNA, Aydın SİPAHİOĞLU, Ahmet YAZICI, “A VRP-Based Route Planning for a

Mobile Robot Group”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 15, Issue

2, 2007.

[2] Fedor A. Kolushev and Alexander A. Bogdanov, “Multi-agent Optimal Path Planning for Mobile

Robots in Environment with Obstacles”, Proceedings of Third International Andrei Ershov Memorial

Conference on Perspectives of System Informatics, Vol. 1755, Springer-Verlag, 1999.

[3] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun, “Exploiting Constraints During Prioritized

Path Planning for Teams of Mobile Robots”, Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2001.

[4] Yi Guo and Lynne E. Parker, “A Distributed and Optimal Motion Planning Approach for Multiple

Mobile Robots”, Proceedings of IEEE International Conference in Robotics and Automation (ICRA),

May 2002.

[5] Marc G. Slack and David P. Miller, “Path Planning Through Time and Space in Dynamic Domains”,

Proceeding of the 10th International Joint Conference on Artificial Intelligence, August 1987.

[6] Tarek Taha, Jaime Valls Miró, and Gamini Dissanayake, “Sampling Based Time Efficient Path

Planning Algorithm for Mobile Platforms”, Proceeding of the 2006 IEE International Conference on

Man-Machine Systems (ICoMMS), 2006.

[7] Russell Gayle, Avneesh Sud, Ming C. Lin, and Dinesh Manocha, “Reactive Deformation Roadmaps:

Motion Planning of Multiple Robots in Dynamic Environments”, Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2007.

[8] Ismail AL-Taharwa, Alaa Sheta and Mohammed Al-Weshah, “A Mobile Robot Path Planning Using

Genetic Algorithm in Static Environment”, Journal of Computer Science, Vol. 4, Issue 4, April 2008.

[9] Pavel Surynek, “Path Planning for Multiple Robots in Bi-connected Environments”, ITI Series, Vol.

431, 2009.

Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018.

 196

bushrakad@yahoo.com

 and space methodsequential entry method

mailto:bushrakad@yahoo.com

