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Abstract 

The principles of processing the superposition of reflected ultra wideband chirp Signals by a 

correlation-filter method are considered; as a result, a transformation occurs in the spatial "window" in the 

range of the compressed LFM signals and is proportional to their frequency shift. At the same time, the 

frequency band of the reflected signals is reduced in proportion to the transformation coefficient, so that their 

further processing can be carried out in digital form, thereby ensuring high stability and identity of the 

processed signals necessary for more reliable recognition of radar targets with allowance for superresolution 

in the distance. A method is proposed for compensating frequency detuning compressed and frequency-

shifted superposition of reflected LFM signals, which makes it possible to carry out their weight processing 

using standard methods and to limit the spectral band. Thus, the signal-to-noise ratio increases, and the 

correlation filtering method of processing, taking into account the compensation of frequency detuning of the 

transformed and compressed LFM signals, approaches the optimal method. This makes it possible to provide 

detection at longer distances, about 0.8 times the maximum detection, and, if necessary, take appropriate 

measures.  It is shown that, regardless of the size of the spatial window, energy losses remain minimal, and 

the frequency of discrete samples of compressed pulses decreases in proportion to the transformation 

coefficient, while ensuring high resolution and saving phase information about the brilliant points in the 

spatial image.  

Keywords: Correlation-filter method, Radar, Frequency-time transformation, Recognition, Weight 

processing. 

Introduction 

Ultra wideband (UWB) radar has become increasingly popular in both commercial and defense 

industries. UWB radars (whether impulse, LFM, noise, or OFDM-based) are defined as having a bandwidth 

of greater than 0.5 GHz, or more than 20% of their center frequency, and are regulated by FCC rules that 

allow UWB technology to coexist with existing radio services without causing interference. In the presence 

of the enemy a large number of unmanned aerial vehicles (UAVs), as well as limited ammunition of surface-

to-air missile (SAM), which means new tasks are set using radar. Along with traditional characteristics, such 

as finding a target, determining its coordinates and trajectory, it is necessary to know to which class this target 

belongs. The presence of such information allows you to separate from a large amount of data the most 

important targets on which you should focus maximum attention, and in case of need to make a decision to 

destroy the most dangerous of them [1], [2]. 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by/4.0/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjM18n8nuXdAhVBlSwKHZmoDmcQFjAAegQICRAC&url=http%3A%2F%2Fetd.fcla.edu%2FCF%2FCFE0001820%2FGallagher_Daniel_R_200707_MSEE.pdf&usg=AOvVaw0-xZ7qdWDy9X-du4XvGWHv


Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018. 

240 
 

To determine the class of a target, it is necessary to set a number of distinctive features by which 

recognition is performed. For recognition can be used: temporal, spectral, correlation, energy, spatial, 

polarization characteristics of the reflected signals, as well as features of the trajectory of targets [3]. The 

information content of individual recognition features is not the same, but an increase in their number reduces 

the probability of an error. Recognition methods, as a rule, use information contained in the structure of 

reflected signals or the entire object as a whole. Unlike the two and multi frequency [4], [5] recognition 

methods, the best quality indicators are achieved with the use of wideband probing signals [6], [7], which 

provide for obtaining radar images of airborne objects. At the same time, the presence of trace information 

about airborne objects, which is recorded in each radar, allows you to perform as close as possible to optimal 

accumulation in order to increase the signal-to-noise ratio and compare the accumulated information with the 

reference images given their angle, direction of movement and speed, thus increasing the probability of 

correct recognition.  

In this case, the probing signals must have a high resolution that allows you to resolve individual 

"brilliant" points of the probed target in range. At the same time, the processing of broadband signals is 

associated with some difficulties, such as the complexity of implementing a broadband path and working 

with compressed signals of short duration, which, in turn, requires a high processing speed of the processing 

equipment and a large amount of memory. Of all the most widely known methods of processing wideband 

echo signals is the correlation-filter method [8]-[11]. This method assumes in the waiting interval of the 

reflected ultra-wideband LFM signal to change the reference frequency of the local oscillator by a frequency 

varying linearly. Then the heterodyning result is processed in a compression filter. This makes it possible to 

reduce the requirement for further processing equipment and maintain a high resolution in the range. 

Statement of the problem 

Along with the listed advantages, in comparison with other methods of processing ultra-wideband 

LMF signals, the correlation-filtering method also has several disadvantages. For example, when processing 

ultra-wideband signals from extended objects in order to isolate amplitude-phase dependence in range, i.e. 

proper images of these objects, the path band should be somewhat larger than the optimum, therefore the 

signal-to-noise ratio declines. In addition, in order to minimize these losses, it is necessary to coordinate as 

accurately as possible the switching time of the reference oscillator frequency to a linearly varying frequency 

with the time of receiving of the reflected signal, i.e. improve the accuracy of target designation, in order not 

to expand the pathway. Finally, the level of side lobes of LFM signals after a compression operation is about 

− 13 dB [12], which is clearly not enough to identify images of targets, because their high-level mask image 

features and makes these images indistinguishable. In addition, the known methods of reducing side lobes in 

this case are not applicable due to the presence of frequency detuning. 

The purpose of this work is to develop working models using a weight filter and an auxiliary local 

oscillator, which operates synchronously with the main local oscillator. Allows you to quickly change the 

bandwidth of the correlation filter channel at the input, while providing at the output of the path a low level 

of side lobes and the approximate SNR to the optimum value. 

Theory 

The principle of the correlation filtering method of processing LFM radio pulses is to reduce the 

frequency deviation of the processed ultra-wideband signals by using a local oscillator with linear modulation 

and their subsequent compression. This leads to the transformation of the time intervals between the 

compressed pulses in proportion to the narrowing of the band of reflected LFM signals. This allows us to 

significantly reduce the requirements for such a basic parameter as the bandwidth frequency of the channel 

for further processing, without compromising the resolution of the system. Thus, the correlation-filtering 

method of processing ultra-wideband radio pulses have a significant advantage over other known methods. 

Signal transformation with correlation filter processing method 

From the literature, it is known [13] that the spectral density of the chirp signal is determined by the 

equation 
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𝑆(𝜔) ≅ 𝑉0√
𝜋

2𝜇
∙ 𝑒𝑥𝑝 {−𝑗 [

(𝜔−𝜔0)2

2𝜇
−

𝜋

4
]}              −

∆𝜔

2
≤ 𝜔 ≤  

∆𝜔

2
                                             (1) 

  Where 𝑉0 − the amplitude of the radio pulse;   

   𝜔0 − the average frequency;        

𝜇 =  (𝛥𝜔 / 𝑇) is the frequency deviation equal to the ratio of the band to the duration of the radio pulse. 

Moreover, the modulus of the spectral density is close to a rectangular shape for large values of the 

base of the chirp signal 𝐷 =  (𝑇 ×  𝛥𝜔)  >>  1, which is just necessary for the realization of a very high 

resolution in range. 

But when processing a superposition of signals overlapping in time, besides reducing the deviation in 

each of these signals, they will differ from each other by central frequencies [14].  

So, for example, taking into account the duration (𝑇ℎ) of the heterodyne LFM signal, its band (∆𝜔ℎ), 

as well as the duration (𝑇0) and band (Δωc) of the probing signal, the maximum change in the center 

frequency of the transformed 𝑖 − 𝑡ℎ reflected signal from its position relative to the heterodyne signal to its 

extreme points is determined by the equation 

𝛿(𝜔𝑖) = (1 − 𝑚)𝜇𝑡𝑟 ∙ 𝛿𝑡𝑖  ,                                                                                              (2) 

Where: 𝑚 =  (𝛥𝜔с / 𝛥𝜔)  − transformation ratio, equal to the ratio of the band of the reflected probe 

signal from brilliant point to the transformed band; 

𝛿𝑡𝑖 −  Is the time shift of the reflected signal from a brilliant point relative to the center of the 

heterodyne signal; 
         𝜇𝑡𝑟 =  (𝛥𝜔 / 𝑇0)  is the frequency deviation of the transformed signal, equal to the ratio of its band to 

the duration. 

Accordingly, the spectral density of the transformed LFM signal reflected from a random 𝑖 − 𝑡ℎ  

brilliant point, of which there may be a large number in the long-range image, will have the following form 

𝑆𝑖(𝜔) ≅ 𝑉0√
𝜋

2𝜇𝑡𝑟 
∙ 𝑒𝑥𝑝 {−𝑗 [

(𝜔−𝜔0−𝛿𝜔𝑖)2

2𝜇𝑡𝑟 
−

𝜋

4
]}                                                               (3) 

And the result of compression in the filter of the 𝑖 − 𝑡ℎ reflected and transformed chirp signal can be 

represented by an equation 

𝑉𝑖(𝑡) = 𝑉0√𝐷
sin

𝛥𝜔 

2
(𝑡−𝑡0−𝑚∙𝛿𝑡𝑖)

𝛥𝜔 

2
(𝑡−𝑡0−𝑚∙𝛿𝑡𝑖)

 ∙ cos [(𝜔0 + 𝛿𝜔𝑖) ∙ (𝑡 − 𝑡0 − 𝛿𝑡𝑖) +
𝛿𝜔𝑖

2

2𝜇𝑡𝑟 
]                   (4) 

In this equation, the parameter 𝑡0 describes a constant delay in the compression filter, which in further 

considerations can be taken into account by a simple shift of coordinates along the time axis. The energy of 

the compressed 𝑖 − 𝑡ℎ chirp signal is concentrated at the point 𝑡𝑖 = 𝑚 ∙ 𝛿𝑡𝑖, and the response time, including 

the transitional oscillatory process of forming the side lobes of the compression filter for each reflected and 

transformed 𝑖 − 𝑡ℎ chirp signal, will be within 

𝑚 ∙ 𝜹𝒕𝒊 − (𝑇0 − 𝑇𝑓) 2⁄ ≤ 𝑡 ≤ 𝑚 ∙ 𝜹𝒕𝒊 + (𝑇0 − 𝑇𝑓) 2⁄ ,                                                     (5) 

Where: 𝑇0 is the duration of the probing LFM signal ; 

   𝑇𝑓 − is the response duration of the compression filter to the delta disturbance. 
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Frequency Offset Compensation of the compressed LFM signals reflected from the brilliant 

points with the correlation filter processing method 

Determined by the equation (2) dependence of the frequency offsets as a result of reducing the 

deviation and transformation of the time responses in the compression filter, which is linear, allows for 

compensation of offset data with subsequent narrowing of the bandwidth of the processing path of the ultra-

wideband LFM signals by the correlation-filtering method and its approximation to the optimal form while 

maintaining the above advantages. 

To transfer the center frequencies of the compressed LFM signals to a certain frequency corresponding 

to the center frequency of the weight filter, it is enough to use an auxiliary local oscillator which operates 

synchronously with the main local oscillator, the rate of change of the frequency of its reference signal varies 

linearly, and the sign of the deviation is opposite to the linearly varying offset of the frequencies of the 

compressed LFM signals reflected from the brilliant points. In this case, the frequency deviation of the 

auxiliary local oscillator can be expressed through the frequency deviation of the transformed signals in 

accordance with the relation. 

𝜇𝑙𝑜 = (1 −
1

𝑚
) 𝜇𝑡𝑟                                                                                                               (6) 

Linear dependence of central frequency offsets (𝝎𝒊𝟏, 𝝎𝒊𝟐, 𝝎𝒊𝟑) and the transformation of compressed 

signals at time (𝝉𝒊𝟏, 𝝉𝒊𝟐, 𝝉𝒊𝟑) illustrated in Figure 1. 

 

 

Fig. 1 Reflected and transformed LFM signals as a result of heterodyning (above) and their 

module after matched filtering (below). 

 



Journal of University of Babylon for Engineering Sciences, Vol. (26), No. (10): 2018. 

243 
 

Let us make sure that the assumption is correct, for this we will perform this operation, i.e. The 

transformed and compressed LFM signal with a random frequency offset from the value of 𝝎𝟎 is multiplied 

by the signal of the auxiliary local oscillator, which center frequency is 𝝎𝟏, and the deviation is determined 

by the equation (6). Then we select the useful part of the signal in the spectral region of the sum of 

frequencies(𝝎𝟎  +  𝝎𝟏). As a result of this operation, the signal will have the following analytical form, 

 

𝑉𝑖(𝑡) =
𝐴0∙𝑉0

2
√𝐷

sin
𝛥𝜔 

2
(𝑡−𝑚∙𝛿𝑡𝑖)

𝛥𝜔 

2
(𝑡−𝑚∙𝛿𝑡𝑖)

 ∙ cos {[𝜔1 + 𝜔0 + (1 − 𝑚)𝜇𝑡𝑟 ∙ 𝛿𝑡𝑖]. 𝑡 +
𝜇𝑡𝑟 ∙𝑡

2

2
(1 −

1

𝑚
) + [

𝛿𝜔𝑖
2

2𝜇𝑡𝑟 
− (𝜔0 +

𝛿𝜔𝑖) ∙ 𝛿𝑡𝑖]}                                                                                                  (7) 

Where: 𝐴0 − is the amplitude value of the auxiliary local oscillator. 

To determine the center frequency of a compressed LFM signal with a random frequency offset after 

the described operation, it is sufficient to calculate the partial derivative of its phase with respect to time and 

perform an analysis in the region of the central lobe where the main energy of the reflected signal is 

concentrated. As a result of this, we will have 

∂p(t)

∂𝑡
⃒𝑡𝑖=𝑚∙𝛿𝑡𝑖

= 𝜔1 + 𝜔0 + (1 − 𝑚)𝜇𝑡𝑟 ∙ 𝛿𝑡𝑖 + 𝜇𝑡𝑟 ∙ (1 −
1

𝑚
) ∙ 𝑡⃒𝑡𝑖=𝑚∙𝛿𝑡𝑖

 

                                         = 𝜔1 + 𝜔0                                                                                         (8)                              

Due to the fact that the analytical test was performed for a random value of the frequency offset of the 

rating value, this statement is effective for all values satisfying the condition that the reflected LFM signal 

completely overlaps with the main local oscillator signal. Otherwise, the edge effect will be observed, at 

which the frequency offset rate increases, and the resolution decreases. 

Reduction of side lobes of compressed LFM signals reflected from brilliant points with a 

correlation filter processing method 

To reduce the level of side lobes you can perform weight processing. In this case, any weight 

processing leads to the expansion of the central lobe and energy losses. In this case, the most acceptable is 

the hamming-weight window [12], which ideally allows reducing the level of side lobes to the level of 

− 42.8 𝑑𝐵 with the extension of the central lobe 1.47 times, while the losses amount to − 1.34 𝑑𝐵. In this 

case, if we use a rectangular window the width of which corresponds to the band of a single reflected and 

transformed LFM signal, the level of side lobes will remain the same, but the signal-to-noise ratio will 

increase and such processing will be optimal.  

Considering that the form of a compressed weighted pulse is strongly affected by the spectrum of the 

LFM signal [9], which as a result of correlation filtering processes and auxiliary local oscillator could be 

distorted, we will determine it from the relation, 

𝑆(𝜔) =
𝐴0∙𝑉0

2
√𝐷 ∫

𝑠𝑖𝑛
𝛥𝜔 

2
(𝑡−𝑚∙𝛿𝑡𝑖)

𝛥𝜔 

2
(𝑡−𝑚∙𝛿𝑡𝑖)

×  𝑐𝑜𝑠 {
(1−𝑚)𝜇𝑡𝑟 

2𝑚
∙ 𝑡2 + (𝛺 + 𝛿𝜔𝑖). 𝑡 + [

𝛿𝜔𝑖
2

2𝜇𝑡𝑟 
− (𝜔0 + 𝛿𝜔𝑖) ∙

𝑚∙𝛿𝑡𝑖+𝑇∋ 2⁄

𝑚∙𝛿𝑡𝑖−𝑇∋ 2⁄

𝛿𝑡𝑖]} 𝑒−𝑗𝜔𝑡 𝑑𝑡 = 𝐴𝑜𝑖 ∫
𝑠𝑖𝑛

𝛥𝜔 

2
∙𝑋

𝛥𝜔 

2
∙𝑋

𝑒𝑥𝑝 𝑗 ∙ [
𝜇𝑙𝑜

2
∙ 𝑋2 + (𝛺 − 𝜔) ∙ 𝑋]

𝑇∋ 2⁄

−𝑇∋ 2⁄
𝑑𝑋                                        (9)   

Where 𝐴𝑜𝑖 =
𝐴0∙𝑉0

4
√𝐷 exp 𝑗 ∙ [(Ω − 𝜔) ∙ 𝑚 ∙ 𝛿𝑡𝑖 − (𝜔0 +

𝛿𝜔𝑖

2
) ∙ 𝛿𝑡𝑖] ;   𝑇∋ = 𝑇0 + 𝑇𝑓      

 𝑋 = (𝑡 − 𝑚 ∙ 𝛿𝑡𝑖) 𝑎𝑛𝑑 Ω = (𝜔1 +  𝜔0 )                             
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To solve equation (9), we can transform it to the following form, 

𝐼 = 𝐴𝑜𝑖 ∫
sin

𝛥𝜔 

2
∙𝑋

𝛥𝜔 

2
∙𝑋

exp 𝑗 ∙ [
𝜇𝑙𝑜

2
∙ 𝑋2 + (Ω − 𝜔) ∙ 𝑋]

𝑇∋ 2⁄

−𝑇∋ 2⁄
𝑑𝑋 =

𝐴𝑜𝑖

𝑗𝛥𝜔
{∫ exp 𝑗 ∙ [

𝜇𝑙𝑜

2
∙ 𝑋2 + (Ω − 𝜔 +

𝛥𝜔 

2
) ∙

𝑇∋ 2⁄

−𝑇∋ 2⁄

𝑋]
𝑑𝑋

𝑋
− ∫ exp 𝑗 ∙ [

𝜇𝑙𝑜

2
∙ 𝑋2 + (Ω − 𝜔 −

𝛥𝜔 

2
) ∙ 𝑋]

𝑑𝑋

𝑋

𝑇∋ 2⁄

−𝑇∋ 2⁄
} =

𝐴𝑜𝑖

𝛥𝜔
{𝐼1(𝐵) − 𝐼2(𝐵)}                       (10) 

 

Where 

 𝐼1,2(𝐵) =
1

𝑗
∫

exp 𝑗.(
𝜇𝑙𝑜

2
∙𝑋2+𝐵𝑋∓

𝛥𝜔 

2
∙𝑋)

𝑋

𝑇∋ 2⁄

−𝑇∋ 2⁄
 𝑑𝑋 , 𝐵 = Ω − 𝜔. 

 

Then differentiate the equation (10) by the parameter В 

 

𝜕𝐼(𝐵)

𝜕𝐵
=

𝐴𝑜𝑖

𝛥𝜔
{∫ exp 𝑗 ∙ [

𝜇𝑙𝑜

2
∙ 𝑋2 + (B +

𝛥𝜔 

2
) ∙ 𝑋] 𝑑𝑋

𝑇∋ 2⁄

−𝑇∋ 2⁄
− ∫ exp 𝑗 ∙ [

𝜇𝑙𝑜

2
∙ 𝑋2 + (B −

𝛥𝜔 

2
) ∙

𝑇∋ 2⁄

−𝑇∋ 2⁄

𝑋] 𝑑𝑋},        (11) 

 

Then, assuming the first integral 𝑌 = √
𝜇𝑙𝑜

2
∙ (𝑋 +

B+
𝛥𝜔 

2

𝜇𝑙𝑜
)  , and in the second integral 

 𝑍 = √
𝜇𝑙𝑜

2
∙ (𝑋 +

B−
𝛥𝜔 

2

𝜇𝑙𝑜
) , then equation (11) is transformed to a known form 

𝜕𝐼(𝐵)

𝜕𝐵
=

𝐴𝑜𝑖

𝛥𝜔
√

2

𝜇𝑙𝑜
∙ {𝑒𝑥𝑝 [−𝑗 ∙

(B+
𝛥𝜔 

2
)

2

2𝜇𝑙𝑜
] ∙ ∫ 𝑒𝑥𝑝 [𝑗 ∙

𝜋

2
𝑌2]

𝑌2

−𝑌1
𝑑𝑌 − 𝑒𝑥𝑝 [−𝑗 ∙

(B−
𝛥𝜔 

2
)

2

2𝜇𝑙𝑜
] ∙

∫ 𝑒𝑥𝑝 [𝑗 ∙
𝜋

2
𝑍2]

𝑍2

−𝑍1
𝑑𝑍}         (12) 

In this equation, each term is represented by the product of the exponential function and the complex 

Fresnel integral [15], the value of these integrals on a certain interval is close to unity, and outside it is zero. 

In this case, these intervals are limited by the band of the auxiliary local oscillator, which is determined by 

the condition of 𝑙𝑜    Т∋ ∙ 𝜇𝑙𝑜. 

Taking into account the above, after integrating with respect to the parameter B, we again obtain the 

difference of the Fresnel integrals, the arguments of which differ by the value of 𝛥𝜔, therefore in this interval 

their difference is close to unity, and outside this interval to zero. 

From this it follows that the modulus of the spectral density of the LFM signal with the base D >> 1 

after the transformation and auxiliary local oscillator has a rectangular shape. Therefore, the operation to 

reduce the level of side lobes can be implemented using the Hamming window without additional correction. 
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The block diagram of the correlation filtering method of processing LFM signals with an auxiliary 

local oscillator and a weight filter is presented in Figure 2. 

Fig. 2 Block diagram: 

MLO - the main local oscillator; DDL - dispersive delay line (consistent with chirp signal); ALO- 

auxiliary local oscillator; WF - weight filter; CU - control unite. 

Simulation results 

The simulation of the processing of reflected ultra-wideband signals in the receiving correlation filter 

path with an auxiliary local oscillator and weight filter were performed in Matlab with the synthesis of the 

reflected ultra-wideband LFM signal from four brilliant points transformed as a result of heterodyning and 

compression. The characteristics of the probing signal and the parameters of the correlation filter track were 

set of conditions as close to real as possible, which simply can be implemented in the radar centimeter range.  

For example, the duration of the probing LFM signal is given by 𝑇0 = 30 𝜇𝑠, and the band 𝛥𝑓𝐶  =
 75 𝑀𝐻𝑧. The duration of the main LFM local oscillator 𝑇𝑀𝐿𝑂  =  30.61 𝜇𝑠, which allows in the spatial 

"window" ΔL = 92 m, with a resolution of less than 3 m, fix a large number of resolved brilliant points and 

correlatively compare their amplitude-phase characteristics with radar images of selected classes of targets 

corresponding to a given angle and speed, taking into account the phase relationships between the brilliant 

points. In this case, the linear variation of the local oscillator frequency for a duration of 30 μs is 73.5 MHz, 

which determines the transformation coefficient, which in this case is equal to 𝑚 =  50, and its full deviation 

at the duration of the heterodyne signal will be 𝛥𝑓𝐿𝑂  =  75 MHz. The characteristics of the compression filter 

are selected so that the reflected signal after transformation, regardless of its temporal position for the 

duration of the heterodyne LFM signal, compressed without distortion, then the response time of the filter to 

the delta disturbance should be 𝑇 𝑓 =  60 𝜇𝑠, and the band 𝛥𝑓𝑓  =  3 𝑀𝐻𝑧. 

Spatial analysis was subjected to a long range of the target with four pronounced brilliant points. 
Moreover, the distance between the first and second points is 18.6 m, between the second and third is 2.4 m, 

and between the third and fourth is 6 m, while the power of the reflected signals is the same, and the center 

of the reflected LFM signal from the third point  matches with the center of the LFM main local oscillator. 

As a result, the correlation filtering processing overlapping in time superposition of LFM signals, 
reflected from the four brilliant points, compression is performed with transformation, the modulus of this 

signal at the output of the compression filter is shown in Figure 3. 
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Fig. 3 Module of compressed LFM signal reflected from four brilliant points 

From this figure, it is clear that the level of side lobes is about  − 11 𝑑𝐵, which in the ideal case should 

be − 13.2 𝑑𝐵. But as a result of a closely located impulse, their side lobes interfere, and therefore this level 

may change in either direction, and the amplitude of this uncertainty in the total signal depends on the level 

of side lobes of each. In order to reduce the side-lobe level and increase the signal-to-noise ratio, the 

compressed signals separated by frequency as a result of the transformation are multiplied by the LFM signal 

of the auxiliary local oscillator, after which weighting is performed. The amplitude value of the signal at the 

output of the weighting filter is shown in Figure 4. 

Fig. 4 Amplitude of four compressed LFM signals after weight processing. 

 

In this figure, four peaks are clearly pronounced, which correspond to the spatial position of the four 

brilliant points located in an extended range target. The level of side lobes is no more than − 33 𝑑𝐵, and the 

weight filter limits the path band. The level of the signal-to-noise ratio (20 dB) after auxiliary local oscillator 

and weight processing for a given spatial window is greater than before local oscillator with weight 

processing, as shown in Figure 5. 
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It can be seen from this figure that the maximum values of all four peaks after weight processing 

exceed these same peaks before auxiliary local oscillator with weight processing at equal values of noise. 

This is explained by the fact that in this model, the band of the dispersive delay line in the correlation filter 

path is twice as wide as the band of a single reflected and transformed signal from a single brilliant point, i.e. 

mismatch loss is − 3 db. After compensation of the frequency detuning and limiting the noise band, taking 

into account the losses for weight processing, the total loss is 1.66 dB, independently of the length of the 

spatial window will remain unchanged. 

 

Fig. 5 Amplitude values of normalized to noise signals: after matched filtering (red) and 

auxiliary local oscillator with weight processing (blue). 

It should also be noted that, in addition to the high resolution of individual brilliant points with a low 

level of side lobes and minimal energy losses during correlation filtering process, phase information is 

preserved. This can also be used to identify target images by comparing the reflected information with 

amplitude-phase reference. The quadrature signal components, in which is present as amplitude and phase 

information, are presented in Figure 6. 

 

Fig. 6 the quadrature components of the four-compressed LFM signals after the weight 

processing. 
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Conclusions 

The dependence of the characteristics of the correlation filter path is determined: the deviation and 

duration of the main and auxiliary local oscillators, as well as the spectral characteristics of the compression 

filter from the parameters of the spatial window, the resolution in the range and transformation coefficient. 

Shown the independence of the energy losses of the linear dimensions of the spatial window in the 

range, which in this case are mainly determined only by the characteristics of the weight filter. 

Simulation results using a correlation filter path with an auxiliary local oscillator and a weight filter 

show a significant decrease in the side lobe level of compressed LFM signals. 

The frequency of discrete samples of compressed LFM pulses at the same time is reduced in 

proportion to the transformation coefficient, and the resolution of the system corresponds to the spectrum of 

a broadband probe pulse. 
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