Load-Carrying Capacity of Patch-Loaded Stiffened Steel Plate Girders

Ahmed Sagban Saadoon Abdulnasser Mohammed Abbas Ali AbdulhasanKhalaf

Civil Engineering Department, College of Engineering, University of Basrah, Iraq

ahmsag@gmail.com nasser21272@gmail.com ali_abd575@yahoo.com

	Submission date:- 22/5/2019	Acceptance date:- 26/8/2019	Publication date:-2/9/2019
--	-----------------------------	-----------------------------	----------------------------

Abstract

This research is aiming to establish an alternative model for determining the ultimate patch load of plate girders with longitudinal stiffener. The proposed model is based on empirical equations and regression analysis and verified with a wide database domain that exists in the literature. A comparison between the results obtained from the proposed model and those obtained from the BS 5400 code specifications is also made in this study. It is found that the proposed model shows a very good agreement with the test results and it is more quite accurate than the BS 5400 code predictions.

Key words: Plate girders, Stiffened webs, Load-carrying capacity, Regression analysis.

1. Introduction

Steel girders are often being under the action of concentrated loads, commonly, called patch loading. Patch loading (or partial edge loading) of steel girders, is a load case in which a concentrated vertical force is perpendicularly subjected to the top flange of a girder. This case of loading usually causes a local failure of the web, in the vicinity region of the loaded flange. Thus, the determination of the ultimate patch load is very important for economic and safety purposes. Usually, stiffeners are utilized to maximize the resistance of the patch loading, as in the bridges or crane girders case. During incremental loading, vertical stiffeners are not an adequate solution, since the applied patch load is moved freely throughout the girders span. Therefore, longitudinal stiffening is used, especially in large girders, to increase the load-carrying capacity (resistance) for the steel plate girders (webs) that subjected to patch loading or concentrated loads, as shown in Fig. (1). The longitudinal stiffeners commonly placed adjacent to the top compression flange, which is exposed to a negative bending, in order to enhance the strength of plate girders and to prevent lateral deflections of the web, and hence, to reduce the secondary effects, which may cause a failure due to breathing of the web [1].

Patch loading is a well-known phenomenon that has been studied theoretically and experimentally by many researchers [2] - [15]. Many proposals (model) have been presented to formulate the patch loading of stiffened plate girders. Some of these proposals are empirical models based on a regression analysis, while some are based on failure mechanisms analysis. Also, there are various models based on soft computing techniques such as neural networks, fuzzy logic, neuro-fuzzy system, and genetic logarithms.

Figure (1) Plate girder with longitudinal stiffener

2. Literature Review

Many investigations have been conducted to study the longitudinal stiffeners effect on patch loading resistance for the plate girders. Some researchers [2] - [6] proposed regression models related the capacity of patch loading for longitudinal stiffened webs with that of unstiffened webs by multiplying the last by a correction factor, which is, a function of the stiffener position. From the deformed configuration at failure, Roberts and Rockey [7] utilized the yield line mechanism to demonstrate the failure pattern of plate girders under patch loading. They proposed a model for the ultimate strength calculation of unstiffened slender plate girders. Their model was established on a yield line mechanism which composing of four plastic hinges in the top flange and three yield lines in the web, as shown in Fig. (2). Later, this model was modified by Roberts and Newark [8] by changing the yield lines position in the web to be at approximately forty times of web thickness. Graciano and Edlund [9] improved Roberts and Newark's model by making an assumption regarding the stiffener flexural rigidity. Lagerquist and Johansson [5] adopted a post-critical resistance approach to propose a model using buckling curves for the patch loading strength. Graciano and Johansson [10] proposed a model in the sense of the design methodology of the Eurocode 3 Part 1.5 [16] to take into account the presence of longitudinal stiffeners. Using soft computing programs, Fonseca et al. [11] developed a neural network to predict the ultimate patch load. Fonseca et al. [12] have also used a neural model to carry out parametric studies of patch loading resistance. Also, a neuro-fuzzy system was used by Fonseca et al. [13] for a parametric analysis in this subject. Cevik [14] proposed a soft model based on genetic programming for patch loading strength. Recently, Cevik et al. [15] formulated a model to calculate the ultimate strength of longitudinally stiffened plate girders using stepwise regression.

Figure (2) Yield line mechanism [7]

3.Regression Models

To take into account the influence of the longitudinally stiffener on the girders carrying capacity, it has been customary to relate the resistance of patch loading for longitudinal stiffened webs F_s with plate girders that unstiffened F_{un} , by multiplying the last with a magnification factor f_s ,

$$F_s = F_{un} f_s, \tag{1}$$

Where the factor f_s depends mainly on the stiffener position (b_1 / h_w) (see Fig. 1). This factor was usually obtained on the form $A + B(b_1 / h_w)$ or $A + B \ln(b_1 / h_w)$, where A and B are two constants estimated by regression analysis.

Janus et al. [2] proposed a magnification factor for the consideration of the stiffener. The factor was based on an empirical formulation of the stiffened web. Kutmanova and skaloud [3] made some improvements to the formulation presented by Janus et al. and proposed the following formula

$$F_{un} = 12.6 f_{yw} t_w^2 \left[1 + 0.004 \left(\frac{s}{s} \atop t_w \right) \right] \left[\left(\frac{I}{f} \atop t_w^4 \right) \sqrt{\frac{f}{240}} \right]^{0.153},$$
(2)
$$f_s = 0.958 - 0.09 \ln \left(\frac{b_1}{2} \right),$$
(3)

 $f_s = 0.958 - 0.09 \ln \left(\frac{b_1}{h_w}\right),$

where I_f is second moment of inertia of the flange.

Markovic and Hajdin [4] obtained a simple linear equation for the consideration of the stiffener

$$F_{un} = 0.5t_{w}^{2} \sqrt{\frac{Ef_{yw}t_{f}}{t_{w}}} \left[1 + \frac{3s}{h_{w}} \left(\frac{t}{t_{f}} \right)^{3/2} \right] \sqrt{1 - \left(\frac{\sigma_{b}}{f_{yw}} \right)^{2}} , \qquad (4)$$

$$f_{s} = 1.28 - 0.7 \left(\frac{b_{1}}{h_{w}} \right), \qquad (5)$$

where σ_b is bending stress. In Eq. (5), f_s is restricted to lie between 1.0 and 1.21. This design method was integrated in BS 5400 Part 3 [17].

Lagerqvist and Johansson [5] developed the following design method for the resistance of patch loading of unstiffened plate girders

$$F_{un} = F_y \cdot \chi , \tag{6}$$

$$F_{y} = f_{yw} I_{w} [s_{s} + 2t_{f} (1 + \sqrt{m_{1} + m_{2}})],$$

$$f_{yt} b_{t}$$
(7)

$$m_1 = \frac{f_{yw}f_y}{f_{yw}t_w},\tag{8}$$

$$m_2 = 0.02 \left(\frac{h_w}{t_f}\right)^2,\tag{9}$$

$$\lambda = \sqrt{\frac{F}{\frac{y}{F_{cr}}}},\tag{10}$$

$$F_{cr} = k_f \cdot \frac{\pi^2 E}{12(1-\nu^2)} \cdot \frac{t^3}{h_w},$$
(11)

$$k_f = 5.82 + 2.1 \left(\frac{h_w}{a}\right)^2 + 0.46 \left(\frac{b_f t_f^3}{h_w t_w^3}\right)^{0.25},$$
(12)

$$\chi = 0.06 + \frac{0.47}{\lambda} \leq 1, \tag{13}$$

where,

 F_{v} is yield resistance,

 m_1 and m_2 are dimensionless factors ($m_2=0$ for welded girders if $\lambda < 0.5$),

 λ is slenderness parameter,

 F_{cr} is buckling load,

 k_f is buckling coefficient, and

 χ is resistance function.

When the applied moment M_a is more than 50% of the resistance bending M_r for the plate girder, it should be considered the interaction with bending moment. This design procedure is incorporated in the Eurocode 3 Part 1.5 [16].

Graciano [6] demonstrated that besides the stiffener location, the rate of the flange to web thickness, and the rate of the yield strength of the flange to yield strength of the web has also some influence on the patch loading resistance. Based on this analysis, a magnification factor for Eq. (6) was obtained as

$$f_{s} = 0.556 - 0.277 \ln \left[\frac{b_{1}}{h_{w}} \left(\frac{f_{yf} / f_{yw}}{t_{f} / t_{w}} \right) \right].$$
(14)

It should be mentioned that this model is restricted for ratios $(b_1 / h_w) \le 0.3$.

4. Proposed Model

Many researchers presented different models, to formulate and estimate the longitudinal stiffening effect on the resistance of patch loading by using experimental results. In this study, the used experimental data, which contain 161 plate girders, are obtained from previous studies which collected by Graciano [1]. The proposed model includes the effects of all parameters that affect the ultimate strength of steel girder webs to patch loading. Generally, these parameters are usually determined by the nature of the problem. Eight major variables are chosen to formulate the proposed model. These variables and their ranges are listed in Table (1).

Parameters	Range
Length of web panel(a) (mm)	500 - 3000
Distance between flange and stiffener (b_1) (mm)	50 - 327
Width of flange (b_f) (mm)	50 - 300
Flange yield stress (f_{yf}) (MPa)	235 - 485
Web yield stress (f_{yw}) (MPa)	191 - 483
Depth of web panel (h_w) (mm)	500 - 1275
Length of patch load (s_s) (mm)	40 - 690
Flange thickness (t_f) (mm)	5 - 40
Web thickness (t_w) (mm)	2 - 6

Table (1) Range of parameters

In the present research, an attempt is made to propose a model that is valid for all ranges of parameters used in the test database where some previous models are not suitable if the specified ranges are exceeded, especially the ratio (b_1/h_w) . The present modeling conducted in two steps. In the first step, some modification on the procedure incorporated in the Eurocode 3 is made. There is no need to calculate the resistance of the unstiffened web, Eq. (6), instead only the yield resistance is required, Eq. (7). While regression analysis, in the second step, is used to find the best empirical magnification factor. As a result, the following equations are proposed to estimate the resistance of stiffened plate girders.

$$F_{s} = F_{y} \cdot f_{s}, \qquad (15)$$

$$f_{s} = 0.556 - 0.277 \cdot \frac{\ln\left[\left(\frac{b}{h}_{w}\right)\left(\frac{f}{f}_{yw}t_{g}}\right)\right]}{\sqrt{\lambda^{3}}}, \qquad (16)$$

where F_{y} and λ are calculated from Eqs. (7-12) for all values of the ratio (b_{1} / h_{w}) .

5. Results and Discussion

Table (2) shows a comparison between the outcomes of the proposed model versus the actual experimental results, and their comparison to BS 5400 results for the entire the originally used test database. Statistical parameters of this comparison are also presented in the mentioned table. From this table, it can be seen that for the proposed model, the average values of ratios of test to predicted load is 0.996 with a standard deviation and variation coefficient of 0.136 and 13.65, respectively. While for the BS 5400 code the average values of ratios of test to predicted load are 1.512 with a standard deviation and variation coefficient of 0.243 and 16.07, respectively. Therefore, the results of the proposed model are closer to the used test data than

those of the BS 4500 code. It is obvious that the BS 4500 procedure is too conservative and its variation, as can be seen in Table (2), is high compared to the proposed model.

The performance of the proposed model and BS 5400 provisions are compared with existing test outcomes is given in Figs. (3) and (4), respectively. The comparison of the test to predicted results, for the proposed model versus BS 5400 results, is given in Fig. (5). As shown in these figures, the correlation coefficient R2 is equal to 0.965 and 0.943 for the proposed model and BS 5400 code, respectively. These values indicate that a good agreement between the anticipation of the proposed model and the actual test values is achieved. The outcomes of the proposed model are found to be more suitable and accurate than the predictions of the BS 5400 design code. The proposed model is valid for all ranges of variables shown in Table (1).

											Predicted load F_s (kN)			
	a		,	C	c						Proposed		BS 5400	
No.	(\mathbf{mm})	b_1	\boldsymbol{b}_{f}	J_{yf}	J_{yw}	h_w	s _s	I f	t _w	F _{test}		F		F
	(mm)	(mm)	(mm)	(MPa)	(MPa)	(mm)	(mm)	(mm)	(mm)	(k N)	F	test	F	test
											I's	F	I's	F
	1000					-00		•	-			5		s
1	1000	125	225	355	392	700	200	20	5	507.4	472.9	1.073	289.9	1.75
2	1000	125	225	355	392	700	200	20	5	520.6	472.9	1.101	290.8	1.79
3	1000	100	225	355	392	700	200	20	5	559.9	507.4	1.103	302.7	1.85
4	1000	100	225	333	392	/00	200	20	5	582.1	487.9	1.195	297.0	1.96
5	1200	160	160	3/1	405	800	300	10	4	436.5	591.0	1.43	1/0.5	2.56
0	1200	300	200	200	447	800	300	15	0	500.2	581.0 725.4	1.088	301.2	1.75
0	1200	250	200	200	485	800	200	20	0	590.5	753.4	0.805	421.0	1.4
0	1050	220	300	200	485	800	200	20	6	645 1	661.2	0.922	447.4	1.30
9	1050	250	200	200	485	800	200	20	0	043.1	702.4	0.97	400.7	1.01
10	2480	100	300	206	465	1000	200	20 8 25	2 9	120	176.7	0.726	422.8	1.64
11	2480	150	150	290	275	1000	40	0.33 0.25	2.0	150	178.0	0.750	111.1	1.17
12	1760	150	150	290	275	1000	40	0.33 9.25	2.0	170	178.9	0.984	115.6	1.32
13	2480	200	150	290	275	1000	40	0.33 0.25	2.0	172	171.6	0.901	108.0	1.49
14	2480	200	150	201	275	1000	40	0.33 0.25	2.0	155	172.7	0.787	108.0	1.23
15	1760	200	150	201	275	1000	40	0.33 0.25	2.0	103	172.7	0.95	112.2	1.4/1
10	2480	200	150	202	259	1000	240	0.33 0.2	2.0	1/0	220.0	0.979	112.0	1.31
17	1760	150	150	292	259	1000	240	0.5	2.0	280	239.9	0.007	124.0	2.11
10	1760	150	150	292	358	1000	240	0.5 83	3.0	200	242.4	1.155	132.7	2.11
20	2480	200	150	328	358	1000	240	83	3.0	100	242.4	0.86	132.7	1.71
20	1760	200	150	328	358	1000	240	83	3.8	220	231.5	0.00	128.7	1.71
21	1760	200	150	328	358	1000	240	83	3.8	235	233.6	1.006	120.7	1.77
22	2480	150	150	286	371	1000	40	12	3.8	130	192.5	0.675	132.7	0.98
24	1760	150	150	286	371	1000	40	12	3.8	198	195.0	1.015	135.6	1 46
25	1760	150	150	286	371	1000	40	12	3.8	210	195.0	1.013	135.5	1.40
26	2480	150	150	283	371	1000	40	12	3.8	145	192.6	0.753	131.8	11
27	1760	150	150	283	371	1000	40	12	3.8	184	195.1	0.943	136.3	1.35
28	1760	150	150	283	371	1000	40	12	3.8	180	195.1	0.923	136.4	1.32
29	2480	150	150	282	380	1000	240	12	3.8	247	271.2	0.911	138.0	1.79
30	1760	150	150	282	380	1000	240	12	3.8	330	274.1	1.204	152.1	2.17
31	1760	150	150	282	380	1000	240	12	3.8	315	274.1	1.149	152.2	2.07
32	2480	150	150	275	380	1000	240	12	3.8	161	271.6	0.593	141.2	1.14
33	1760	150	150	275	380	1000	240	12	3.8	275	274.5	1.002	151.9	1.81
34	1760	150	150	275	380	1000	240	12	3.8	288	274.5	1.049	151.6	1.9
35	3000	250	250	277	252	735	40	12	3	93.3	97.4	0.958	69.6	1.341
36	1100	250	250	277	252	735	40	12	3	92.4	100.1	0.923	69.5	1.329
37	1100	250	250	277	252	735	120	12	3	101	115.9	0.871	72.1	1.401
38	3000	150	250	277	252	735	40	12	3	104.7	104.2	1.005	75.9	1.379
39	1100	150	250	277	252	735	40	12	3	101.8	107.6	0.946	76.0	1.339
40	1100	150	250	277	252	735	120	12	3	106.3	123.7	0.859	78.7	1.351
41	505	250	50	439	236	505	50	5	2	30	30.3	0.99	24.0	1.25
42	505	250	50	439	239	505	50	5	2	35	30.7	1 14	24.1	1 4 5 2

 Table (2) Comparison between predicted and test patch loads

Table (2) Continued

											Predicted load F_s (kN)			
	a	,	4	£	£	,		4			Prop	osed	BS :	5400
No.	(mm)	b_1	D_{f}		J_{yw}	()	<i>s</i> _s		t_w	F _{test}		F		F
		(mm)	(mm)	(MPa)	(MPa)	(mm)	(mm)	(mm)	(mm)	(KN)	F_{s}	test	F_{s}	test
												F _s		F _s
43	505	250	50	453	231	505	50	5	2	33.5	29.5	1.136	23.8	1.408
44	505	100	50	453	234	505	50	5	2	36.5	35.8 35.6	1.02	27.2	1.342
46	505	100	50	458	233	505	50	5	2	41	35.6	1.152	27.2	1.507
47	505	50	50	485	236	505	50	5	2	35	40.2	0.871	28.9	1.211
48	505 505	50 50	50	466 467	234	505 505	50 50	5	2	42 39	40.1 40.8	1.047	29.0 29.1	1.448
50	505	50	50	471	232	505	50	5	2	42	39.8	1.055	28.8	1.458
51	505	50	50	461	231	505	50	5	2	47.5	39.7	1.196	28.6	1.661
52	505	250	50	481	233	505	50	5	2	42.5	39.8	1.068	28.7	1.481
54	1005	250	50	472	210	502.5	100	5	2	34	30.9	1.1	24.1	1.411
55	1005	250	50	476	215	502.5	100	5	2	37.5	31.6	1.187	24.5	1.531
56	1005	100	50	295 461	204	502.5	100	5	2	32.5	37.1	0.876	27.1	1.199
58	1005	100	50	470	218	502.5	100	5	2	38.2	37.4	1.010	28.1	1.359
59	1005	50	50	303	191	502.5	100	5	2	29	38.7	0.749	27.9	1.039
60	1005	50	50	293	204	502.5	100	5	2	33	41.0	0.805	29.0	1.138
62	1005	50	50	469	210	502.5	100	5	2	34	40.0	0.823	29.3	1.141
63	1005	50	50	478	215	502.5	100	5	2	43	40.8	1.054	29.7	1.448
64	1005	50	50	473	218	502.5	100	5	2	40	41.3	0.969	29.9	1.338
65	622.5	200	120	242	256	500	62 62	12	6	315	261.1	1.206	211.4	1.49
67	622.5	125	120	242	256	500	62	12	6	342	308.4	1.109	234.3	1.46
68	622.5	125	120	242	256	500	62	12	6	327	308.4	1.06	233.6	1.4
69 70	622.5	75	120	242	256	500	62 62	12	6	370	359.9	1.028	248.3	1.49
71	622.5	200	120	242	256	500	62	12	6	285	261.1	1.092	211.1	1.35
72	622.5	200	120	242	256	500	62	12	6	295	261.1	1.13	210.7	1.4
73	622.5	125	120	242	256	500	62 62	12	6	290	308.4 308.4	0.94	233.9	1.24
75	622.5	75	120	242	256	500	62	12	6	351	359.9	0.975	248.9	1.41
76	622.5	75	120	242	256	500	62	12	6	338	359.9	0.939	248.5	1.36
77	622.5	200	120	242	256	500	62 62	12	6	296	261.1	1.134	211.4	1.4
79	622.5	125	120	242	256	500	62	12	6	300	308.4	0.973	234.4	1.28
80	622.5	125	120	242	256	500	62	12	6	282	308.4	0.914	233.1	1.21
81	622.5	75	120	242	256	500	62 62	12	6	372	359.9	1.034	248.0	1.5
83	500	100	120	292	230	500	50	5.1	2.4	40	48.7	0.821	36.0	1.111
84	500	100	119.9	309	238	500	50	6.1	2.2	55	49.0	1.122	34.6	1.59
85	500	100	119.8	309	238	500	50 50	6	2.2	57.5 62	48.7	1.181	34.4	1.672
87	500	100	119.9	239	238	500	50	11.7	2.2	65	66.7	0.975	46.1	1.41
88	500	100	119.3	239	238	500	50	11.9	2.2	66.5	67.3	0.988	46.5	1.43
89	500	100	119.7	239	238	500	50	11.9 85	2.2	59	67.3	0.877	46.5	1.269
90	500	100	118.0	262	360	500	50	8.4	4.4	192	186.6	1.018	148.8	1.29
92	500	100	119.1	262	360	500	50	7.8	4	202	181.5	1.113	123.2	1.64
93	500	100	119.2	262	360	500	50	8.5	4	193.5	187.4	1.033	126.5	1.53
94	500	100	120.9	285 285	360	500	50	20	4	290	274.3	1.148	305.3	0.95
96	500	100	120.4	285	360	500	50	20	4	276	274.2	1.007	306.7	0.9
97	500	100	120.2	239	426	500	50	11.9	5.6	339	428.4	0.791	271.2	1.25
98	500	100	89.7 89.7	277	426	500	50 50	12.3	5.6 5.5	387 408	415.5	0.931	273.8	1.42
100	500	100	89.4	277	455	500	50	12.1	5.5	420	418.7	1.003	272.7	1.54
101	500	100	99	254	426	500	50	30.4	5.6	564	641.0	0.88	402.9	1.4
$\frac{102}{103}$	500	100	100	254	426	500	50 50	30.5	5.6	592 610	642.9 637.4	0.921	402.7	1.47
103	500	100	119.6	274	244	500	50	6	2	55	44.1	1.247	29.9	1.839
105	500	100	119.9	274	244	500	50	6	2	50	44 1	1.134	29.9	1 672

Table (2) Continued

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												Predicted load F_s (kN)			
No. m h s f f f f f F					c	c						Prop	Proposed		5400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	a (mm)	b_1	b _f	f_{yf}	f_{yw}	h _w	s s	t_{f}	t _w	F _{test}		F		F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		()	(mm)	(mm)	(MPa)	(MPa)	(mm)	(mm)	(mm)	(mm)	(kN)	F_{\perp}	test	F	test
006 500 100 1194 274 244 500 50 6.1 2 57 44.4 1284 302 1887 007 500 100 120.7 254 244 500 50 12.1 2 77 61.0 1.18 409 1.18 007 500 100 120.1 254 224 500 50 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.15												2	F	2	F
107 500 100 12.0 2 84 61.0 1.37 41.0 24.0 108 500 100 12.0 2.2 72 61.0 1.1.8 40.9 1.8.8 100 500 100 12.0 2.24 2.83 500 50 8.4 4 171 152.9 1.1.8 11.1.8	106	500	100	119.9	274	244	500	50	6.1	2	57	44.4	1.284	30.2	1.887
108 500 100 12.7 24 500 12.1 2 72 61.0 1.18 41.09 1.6 100 500 100 12.0.1 294 283 500 50 8.4 4 171 152.9 1.118 1.53 115 500 100 120.4 294 283 500 50 8.5 4 185 152.1 1.21 6.0 1.06 160.2 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.06 1.06 1.62.3 1.52 113 500 100 120.9 270 2283 500 50 1.23 5.4 387.5 372.8 1.039 248.4 1.55 116 500 100 90.7 272 396 500 50 1.23 5.4 610 577.1 1.037 367.5 1.66 125 500 500 500 50 3.04 5.4 610 577.1 1.037 368.1 1.65 1.108 1.108 1.	107	500	100	120.7	254	244	500	50	12.1	2	84	61.0	1.377	41.0	2.049
Diam Diam <thdiam< th=""> Diam Diam <thd< td=""><td>108</td><td>500</td><td>100</td><td>120.7</td><td>254</td><td>244</td><td>500</td><td>50 50</td><td>12.1</td><td>2</td><td>72</td><td>61.0</td><td>1.18</td><td>40.9</td><td>1.76</td></thd<></thdiam<>	108	500	100	120.7	254	244	500	50 50	12.1	2	72	61.0	1.18	40.9	1.76
11 500 100 120.2 294 283 500 50 8.5 4 156 1337 10.15 112.2 13.9 113 500 100 120.9 270 283 500 50 20.3 4 256.5 240.6 10.66 162.3 1.58 113 500 100 120.9 270 283 500 50 20.4 4 246.5 240.6 10.66 162.3 1.58 115 500 100 120.7 272 396 500 50 12.4 5.4 387.5 372.8 10.39 244.8 1.55 118 500 100 90.7 272 396 500 50 30.4 5.4 600 579 10.44 368.8 1.64 120 500 100 90.2 272 396 500 50 30.6 5.4 600 579 10.44 368.8 1.64 121 500 50 12.4 500 500 8.3 4.1	1109	500	100	120.8	294	244	500	50	8.4	4	171	152.9	1.118	111.8	1.53
112 500 100 120.4 294 283 500 50 8.3 4 4.85 152.1 1.12 61.16 11.5 1.65 113 500 100 120.9 270 283 500 50 20.4 4 256.5 210.6 1.066 16.23 1.58 115 500 100 100.7 270 283 500 50 21.4 5.4 233.6 374.0 1.088 24.8 1.55 116 500 100 90.7 272 396 500 50 12.4 5.4 397.5 374.0 1.067 249.4 1.66 119 500 100 90.6 269 396 500 50 30.6 5.4 600 579.0 1.036 8.68 1.41 120 500 100 100.2 269 396 500 50 8.5 4.1 201 1577 1.46 1.65 1.26.3 1.75 1.66 1.26.3 1.75 1.66 1.26.3 1.75 <	111	500	100	120.2	294	283	500	50	8.5	4	156	153.7	1.015	112.2	1.39
113 500 100 120.9 270 283 500 50 20.3 4 256.5 240.6 1.066 16.3 1.58 114 500 100 120.7 270 283 500 50 20.2 4 248 241.3 1.028 163.2 1.52 115 500 100 90.7 272 396 500 50 12.4 5.4 337.5 37.80 1.028 48.4 1.55 118 500 100 90.7 272 396 500 50 12.4 5.4 337.5 37.80 1.037 24.9 1.65 120 000 000 92.6 269 396 500 50 30.6 5.4 600 57.97 1.043 368.4 1.64 121 500 50 12.0.4 507 50 1.04 1.68 1.1 1.96 1.97.1 1.043 1.648 122 500 50 12.04 1.26 500 50 8.3 4.1 1.96<	112	500	100	120.4	294	283	500	50	8.3	4	185	152.1	1.216	111.5	1.659
11a S00 100 120.9 270 283 500 50 202 4 4 248 241.3 10.28 16.5.2 1.5.2 116 500 100 90.7 272 396 500 50 12.3 5.4 335 374.0 0.88 248.9 1.5.3 117 500 100 90.7 272 396 500 50 12.4 5.4 337.5 7.28 1.09 244.4 1.5.6 118 500 100 99.6 269 396 500 50 30.6 5.4 600 577.1 1.067 236.7 1.64 368.1 1.63 121 500 50 12.0 278 304 500 50 8.3 4.1 100 197.9 1.016 12.80 1.57 123 500 50 12.0.6 278 304 500 50 8.2 4.1 186 197.1 0.94 12.7 1.46 124 500 50 12.0.6 278	113	500	100	120.9	270	283	500	50	20.3	4	256.5	240.6	1.066	162.3	1.58
110 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 121 120 120 121 120 121 120 122 124 120 123 124 124 120 100 100 90.2 120 120 120 100 100 100.2 269 396 500 50 100 100 100.2 120 120 100 100.2 100 100.2 100 100.2 100 100 100.2 100 100 100.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100	114	500	100	120.9	270	283	500	50	20.4	4	248	241.3	1.028	163.2	1.52
177 S00 100 90.8 272 396 500 50 12.3 5.4 387.5 372.8 1039 244.4 1.56 118 500 100 99.7 272 396 500 50 30.4 5.4 610 571.1 1.067 249.4 1.6 120 500 100 99.3 269 396 500 50 30.6 5.4 600 579.7 1.048 368.9 1.6 121 500 50 120.4 278 304 500 50 8.3 4.1 120 197.9 0.99 1.27.3 1.53 123 500 50 120.4 278 304 500 50 8.2 4.1 199 196.2 1.014 128.5 156 125 500 50 120.6 278 304 500 50 8.2 4.1 199 197.0 1.014 128.5 126.4 1.47 128 500 50 120.7 278 304 500	115	500	100	90.7	270	396	500	50	12.4	5.4	336	374.0	0.898	248.9	1.35
118 500 100 99.7 272 39.6 500 50 12.4 5.4 610 577.1 1.057 249.4 1.6 120 500 100 190.2 269 39.6 500 50 30.6 5.4 600 579.0 1.036 36.6.1 1.63 121 500 50 120.2 278 30.4 500 50 8.3 4.1 201 197.9 1.016 128.0 1.57 123 500 50 120.8 278 30.4 500 50 8.3 4.1 196 197.9 1.016 128.0 1.57 124 500 50 120.3 278 30.4 500 50 8.2 4.1 199 197.0 1.014 126.8 1.569 125 500 50 120.7 278 30.4 500 50 8.1 4.1 197.1 1.055 128.1 1.639 129 500 50 120.7 278 30.4 500 50 8.1<	117	500	100	90.8	272	396	500	50	12.3	5.4	387.5	372.8	1.039	248.4	1.56
119 500 100 99.6 269 39.6 500 50 30.4 5.4 610 577.1 10.37 367.5 1.66 121 500 100 100.2 269 39.6 500 50 30.6 5.4 600 579.7 10.44 368.1 1.63 122 500 50 120.3 27.8 30.4 500 50 8.3 4.1 191 197.9 1.016 128.0 1.57 122 500 50 120.8 27.8 30.4 500 50 8.1 4.1 199 196.2 1.014 126.8 1.560 126 500 50 120.3 27.8 30.4 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 128 500 50 120.7 27.8 30.4 500 50 8.1 4.1 191 196.2 0.973 126.3 1.22 129 500 50 120.7 27.8 30.4 500 <td< td=""><td>118</td><td>500</td><td>100</td><td>90.7</td><td>272</td><td>396</td><td>500</td><td>50</td><td>12.4</td><td>5.4</td><td>399</td><td>374.0</td><td>1.067</td><td>249.4</td><td>1.6</td></td<>	118	500	100	90.7	272	396	500	50	12.4	5.4	399	374.0	1.067	249.4	1.6
120 500 100 190.2 260 396 500 50 30.6 5.4 600 577.7 10.44 368.8 1.64 121 500 50 120.3 278 304 500 50 8.3 4.1 196 197.9 10.16 128.0 1.57 123 500 50 120.4 278 304 500 50 8.3 4.1 196 197.9 10.94 127.4 1.46 125 500 50 120.6 278 304 500 50 8.2 4.1 199 197.0 1.01 126.8 1.560 126 500 50 120.7 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 128 500 50 120.7 278 304 500 50 8.2 4.1 120 198.8 1.055 126.8 1.64 130 500 50 118.6 244 304 500 50	119	500	100	99.6	269	396	500	50	30.4	5.4	610	577.1	1.057	367.5	1.66
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	500	100	99.3	269	396	500	50	30.6	5.4	600	579.0	1.036	368.1	1.63
123 500 500 120.4 278 304 500 50 8.3 4.1 166 197.9 0.99 127.3 1.34 124 500 50 120.8 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 125 500 50 120.6 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 126 500 50 120.8 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 128 500 50 120.6 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 129 500 50 120.7 278 304 500 50 8.1 4.1 197.1 0.944 127.4 1.40 120 500 50 118.2 244 304 500 50 8.1 <	121	500	50	120.2	209	390	500	50	8.3	4.1	201	197.9	1.044	128.0	1.04
124 500 50 120.8 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 125 500 50 120.6 278 304 500 50 8.1 4.1 199 197.1 0.944 127.8 1.01 126.8 1.56 127 500 50 120.8 278 304 500 50 8.2 4.1 189 197.1 0.944 127.4 1.46 128 500 50 120.7 278 304 500 50 8.1 4.1 187 196.2 0.979 126.3 1.52 128 500 50 120.7 278 304 500 50 8.1 4.1 192 196.2 0.979 126.3 1.52 130 500 50 118.2 244 304 500 50 19.7 4.1 237 290.6 0.816 183.7 1.41 132 500 50 118.6 244 304	123	500	50	120.4	278	304	500	50	8.3	4.1	196	197.9	0.99	127.3	1.54
125 500 50 120.6 278 304 500 50 8.2 4.1 199 197.0 10.1 126.8 1.569 127 500 50 120.3 278 304 500 50 8.2 4.1 186 197.1 0.944 127.4 1.46 128 500 50 120.7 278 304 500 50 8.1 4.1 187 196.2 0.953 126.4 1.479 129 500 50 120.7 278 304 500 50 8.1 4.1 192 196.2 0.979 126.3 1.52 130 500 50 112.7 278 304 500 50 18.7 1.42 304 500 50 18.7 1.43 303 500 50 118.4 244 304 500 50 19.7 4.1 237 290.6 0.836 18.7 1.43 133 500 50 118.4 244 304 500 50 19.7 <td< td=""><td>124</td><td>500</td><td>50</td><td>120.8</td><td>278</td><td>304</td><td>500</td><td>50</td><td>8.2</td><td>4.1</td><td>186</td><td>197.1</td><td>0.944</td><td>127.4</td><td>1.46</td></td<>	124	500	50	120.8	278	304	500	50	8.2	4.1	186	197.1	0.944	127.4	1.46
126 500 50 120.5 278 304 500 50 8.2 4.1 199 197.0 1.01 126.8 1.568 1.588 127 500 50 120.7 278 304 500 50 8.1 4.1 186 197.1 0.944 127.4 1.46 129 500 50 120.6 278 304 500 50 8.1 4.1 187 196.2 0.953 128.1 1.639 130 500 50 120.7 278 304 500 50 8.2 4.1 192 196.2 0.957 128.3 1.52 131 500 50 118.5 244 304 500 50 19.7 4.1 243 290.5 0.836 183.7 1.41 135 500 50 118.4 244 304 500 50 19.8 4.1 267 291.3 0.917 18.1 1.45 135 500 50 118.6 244 304 500	125	500	50	120.6	278	304	500	50	8.1	4.1	199	196.2	1.014	126.8	1.569
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	126	500	50	120.3	278	304	500	50	8.2 8.2	4.1	199	197.0	1.01	126.8	1.569
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	127	500	50	120.8	278	304	500	50	8.1	4.1	180	197.1	0.944	127.4	1.40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	129	500	50	120.6	278	304	500	50	8.4	4.1	210	198.8	1.056	128.1	1.639
131 500 50 120.7 278 304 500 50 8.2 4.1 208 197.1 1.055 12.68 1.64 132 500 50 118.2 244 304 500 50 19.7 4.1 243 290.6 0.816 183.7 1.13 134 500 50 118.4 244 304 500 50 19.8 4.1 267 291.3 0.917 184.1 1.45 135 500 50 118.4 244 304 500 50 19.8 4.1 267 291.3 0.917 183.7 1.41 136 500 50 118.7 244 304 500 50 19.9 4.1 261 292.1 0.887 183.5 1.39 137 500 50 118.7 244 304 500 50 19.7 4.1 261 292.1 0.887 183.5 1.42 138 500 50 19.6 4.1 266 280.8 0.918 <td>130</td> <td>500</td> <td>50</td> <td>120.7</td> <td>278</td> <td>304</td> <td>500</td> <td>50</td> <td>8.1</td> <td>4.1</td> <td>192</td> <td>196.2</td> <td>0.979</td> <td>126.3</td> <td>1.52</td>	130	500	50	120.7	278	304	500	50	8.1	4.1	192	196.2	0.979	126.3	1.52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	131	500	50	120.7	278	304	500	50	8.2	4.1	208	197.1	1.055	126.8	1.64
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	132	500	50	118.2	244	304	500	50	19.7	4.1	243	290.5	0.836	182.7	1.33
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	133	500	50	118.5	244	304	500	50	19.7	4.1	267	290.0	0.917	183.7	1.45
136 500 50 118.6 244 304 500 50 19.8 4.1 255 291.4 0.875 183.5 1.39 137 500 50 118.7 244 304 500 50 19.9 4.1 261 292.1 0.894 183.8 1.42 138 500 50 118.3 244 304 500 50 19.6 4.1 266 289.8 0.918 182.2 1.46 140 500 50 118.3 244 304 500 50 19.6 4.1 270 289.8 0.932 182.4 1.48 141 500 50 118.4 244 304 500 50 19.6 4.1 270 289.8 0.933 182.7 1.56 142 802 168 300.5 286 266 798 40 15.5 2 45 48.2 0.934 28.1 1.601 144 800 162 120 285 266 800 40	135	500	50	118.4	244	304	500	50	19.9	4.1	259	292.0	0.887	183.7	1.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	136	500	50	118.6	244	304	500	50	19.8	4.1	255	291.4	0.875	183.5	1.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	137	500	50	118.7	244	304	500	50	19.9	4.1	261	292.1	0.894	183.8	1.42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	138	500	50	118.6	244	304	500	50	19.7	4.1	264	290.6	0.908	183.3	1.44
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	140	500	50	118.3	244	304	500	50	19.6	4.1	200	289.8	0.932	182.4	1.40
142 802 168 300.5 286 266 798 40 15.55 2.1 71 92.3 0.769 51.1 1.389 143 800 162 120.4 285 266 798 40 5.07 2 45 48.2 0.934 28.1 1.601 144 800 168 300 295 266 800 40 15 2 68.5 86.1 0.796 46.6 1.47 145 800 160 300 295 300 800 40 15 2 48.2 0.882 28.0 1.518 146 2500 160 300 295 300 800 40 15 2 78 91.0 0.857 50.0 1.6 147 1200 160 250 265 245 800 40 12 3 132.6 102.7 1.291 74.9 1.77 150 1200 160 250 265 245 800 40 12 3	141	500	50	118.4	244	304	500	50	19.6	4.1	285	289.8	0.983	182.7	1.56
143 800 162 120.4 285 266 798 40 5.07 2 45 48.2 0.934 28.1 1.601 144 800 168 300 295 266 800 40 15 2 68.5 86.1 0.796 46.6 1.47 145 800 162 120 285 266 800 40 15 2 48.2 0.882 28.0 1.518 146 2500 160 300 295 300 800 40 15 2 80 89.6 0.883 50.0 1.6 147 1200 160 300 295 300 800 40 15 2 78 91.0 0.857 50.0 1.56 148 600 160 250 265 245 800 40 12 3 132.6 102.7 1.291 74.9 1.77 150 1200 160 250 265 245 800 40 12 3 121.4 <td>142</td> <td>802</td> <td>168</td> <td>300.5</td> <td>286</td> <td>266</td> <td>798</td> <td>40</td> <td>15.55</td> <td>2.1</td> <td>71</td> <td>92.3</td> <td>0.769</td> <td>51.1</td> <td>1.389</td>	142	802	168	300.5	286	266	798	40	15.55	2.1	71	92.3	0.769	51.1	1.389
144 800 168 300 295 266 800 40 15 2 68.5 86.1 0.796 46.6 1.47 145 800 162 120 285 266 800 40 5 2 42.5 48.2 0.882 28.0 1.518 146 2500 160 300 295 300 800 40 15 2 80 89.6 0.882 28.0 1.518 147 1200 160 300 295 300 800 40 15 2 92 96.2 0.956 50.0 1.84 149 2500 160 250 265 245 800 40 12 3 132.6 102.7 1.291 74.9 1.77 150 1200 160 250 265 245 800 40 12 3 121.4 115.9 1.047 74.9 1.621 152 2200 136 120 290 354 680 40 5 2 <td>143</td> <td>800</td> <td>162</td> <td>120.4</td> <td>285</td> <td>266</td> <td>798</td> <td>40</td> <td>5.07</td> <td>2</td> <td>45</td> <td>48.2</td> <td>0.934</td> <td>28.1</td> <td>1.601</td>	143	800	162	120.4	285	266	798	40	5.07	2	45	48.2	0.934	28.1	1.601
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	144	800	168	120	295	200	800	40	15	2	42.5	80.1 48.2	0.796	46.6 28.0	1.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	146	2500	160	300	295	300	800	40	15	2	80	89.6	0.893	50.0	1.6
148 600 160 300 295 300 800 40 15 2 92 96.2 0.956 50.0 1.84 149 2500 160 250 265 245 800 40 12 3 132.6 102.7 1.291 74.9 1.77 150 1200 160 250 265 245 800 40 12 3 97.5 105.5 0.924 75.0 1.3 151 600 160 250 265 245 800 40 12 3 121.4 115.9 1.047 74.9 1.621 152 2200 136 120 290 354 680 40 5 2 45.8 55.3 0.828 32.5 1.409 153 1020 136 120 290 354 680 40 5 2 54.4 56.4 0.965 32.4 1.679 154 510 136 120 290 354 680 40 5 2 <td>147</td> <td>1200</td> <td>160</td> <td>300</td> <td>295</td> <td>300</td> <td>800</td> <td>40</td> <td>15</td> <td>2</td> <td>78</td> <td>91.0</td> <td>0.857</td> <td>50.0</td> <td>1.56</td>	147	1200	160	300	295	300	800	40	15	2	78	91.0	0.857	50.0	1.56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	148	600	160	300	295	300	800	40	15	2	92	96.2	0.956	50.0	1.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149	2500	160	250	265	245	800	40	12	3	132.6	102.7	1.291	74.9	1.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150	600	160	250	265	245	800	40	12	3	97.5	105.5	1.047	73.0	1.5
153 1020 136 120 290 354 680 40 5 2 54.4 56.4 0.965 32.4 1.679 154 510 136 120 290 354 680 40 5 2 54.7 60.3 0.907 32.6 1.678 155 897.1 180 181.2 266 270 899.1 90 8 3.2 105.42 118.8 0.887 54.9 1.92 156 892.2 180 180.4 266 270 901.5 90 8 3.2 110.36 119.0 0.927 56.9 1.94 157 1780 327 230 244 279 1274 690 40 6 720 798.8 0.901 510.6 1.41 158 1780 264 230 267 286 1274 690 40 6 730 831.2 0.878 493.2 1.48 159 1000 200 300 235.2 325 1000 300	152	2200	136	120	290	354	680	40	5	2	45.8	55.3	0.828	32.5	1.409
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	153	1020	136	120	290	354	680	40	5	2	54.4	56.4	0.965	32.4	1.679
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154	510	136	120	290	354	680	40	5	2	54.7	60.3	0.907	32.6	1.678
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	155	897.1	180	181.2	266	270	899.1	90	8	3.2	105.42	118.8	0.887	54.9	1.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150	892.2 1780	327	230	200	270	901.5 1274	90 690	8 40	5.2 6	720	798.8	0.927	510.9	1.94
159 1000 200 300 235.2 325 1000 300 9 6 438.2 477.2 0.918 260.8 1.68 160 635 127 152.4 303 303 635 127 12.7 3.2 130 157.9 0.823 79.8 1.629 161 635 127 152.4 275 635 127 6.35 3.2 85 116.0 0.733 59.9 1.419 Average 0.996 1.512 Standard deviation 0.136	158	1780	264	230	267	286	1274	690	40	6	730	831.2	0.878	493.2	1.48
160 635 127 152.4 303 303 635 127 12.7 3.2 130 157.9 0.823 79.8 1.629 161 635 127 152.4 275 275 635 127 6.35 3.2 85 116.0 0.733 59.9 1.419 Average 0.996 1.512 Standard deviation 0.136 0.243	159	1000	200	300	235.2	325	1000	300	9	6	438.2	477.2	0.918	260.8	1.68
161 635 127 152.4 275 635 127 6.35 3.2 85 116.0 0.733 59.9 1.419 Average 0.996 1.512 Standard deviation 0.136 0.243	160	635	127	152.4	303	303	635	127	12.7	3.2	130	157.9	0.823	79.8	1.629
Average 0.996 1.512 Standard deviation 0.136 0.243	161	635	127	152.4	275	275	635	127	6.35	3.2	85	116.0	0.733	59.9	1.419
Standard deviation 0.136												Average	0.996		1.512
Standard deviation 0.130 0.243										e.	tondend d	oviation	0.136	ł	0.242
										6			10.150	ł	16.07

Figure (3) Performance of the proposed model

Figure (4) Performance of the BS 5400 predictions

Figure (5) Comparison of test to predicted ratios for the proposed model versus BS 5400 predictions

6. Comparison with Some Existing Models

The values of the patch load, for the used test data, estimated by the proposed model are compared with the results of two different existing models. The first model, model I, was proposed by Graciano and Edlund [9] who improved a failure mechanism model based on a yield line mechanism in order to include the effect of longitudinal stiffening. While the second one, model II, was presented by Graciano and Johansson [10] by proposing a model according to the design philosophy of the Eurocode3 Part 1.5 [16] based on the post-critical strength of the plate girders. The comparison of the results of the proposed model with the results of mode I and mode II is given in Figs. (6) and (7), respectively. As can be seen from these figures, R2 = 0.944 and 0.924 for model I and model II, respectively, while R2 = 0.965 for the proposed model (Fig. 3). These values indicate that the estimated results of the proposed model are more correct and accurate than the predictions of model I and model II.

Figure (6) Comparison between the proposed model and model I

Figure (7) Comparison between the proposed model and model II

7. Conclusions

Patch load modeling is generally mechanical or regression models based on the existing test outcomes. This study submits an alternative model for the determination of the ultimate patch load of plate girders that stiffened longitudinally. The proposed model consists of empirical equations based on a wide domain of existing test database from the open literature. The present proposed model shows a very good agreement with test results (R2=0.965), and it is more quite accurate than the BS 5400 code predictions. The proposed model has significant advantages since it is adequate for the whole variables ranges that used in the database, where some previous patterns are not valid if specified ranges are exceeded.

Conflicts of Interest

The author declares that they have no conflicts of interest.

References

- C. Graciano, "Patch loading-resistance of longitudinally stiffened steel girder webs", Ph.D. thesis, Lulea University of Technology, 2002.
- [2] K. Janus, I. Kutmanova and M. Skaloud, "Experimental investigation into the ultimate load behaviour of longitudinally stiffened steel webs under partial edge loading", Acta Tech. CSAV Prague, 2: 158–95, 1988.
- [3] I. Kutmanova and M. skaloud, "Ultimate limit state of slender steel webs subjected to (i) constant and (ii) repeated partial end loading", J. Constr. Steel Res., 21: 147-162, 1992.
- [4] N. Markovic and N. Hajdin, "A contribution to the analysis of the behaviour of plate girders subjected to patch loading", J. Constr. Steel Res., 21: 163–73, 1992.
- [5] O. Lagerqvist and B. Johansson, "Resistance of I-girders to concentrated loads", J. Constr Steel Res, 39(2): 87–119, 1996.

- [6] C. Graciano, "Ultimate resistance of longitudinally stiffened webs subjected to patch loading", Thin-Walled Struct, 41(6): 529–41, 2003.
- [7] T.M. Roberts and K.C. Rockey, "A mechanism solution for predicting the collapse loads of slender plate girders when subjected to in-plane patch loading", Proceed. In St. Civil Eng. Struct. Build, 67(2): 155– 75, 1979.
- [8] T.M. Roberts and A.C. Newark, "Strength of webs subjected to compressive edge Loading", J. Struct. Eng., 123(2): 176–83, 1997.
- [9] C. Graciano and B. Edlund, "Failure mechanism of slender girder webs with a longitudinal stiffener under patch loading", J. Constr. Steel Res., 59(1): 27–45, 2003.
- [10] C. Graciano and B. Johansson, "Resistance of longitudinally stiffened I-girders subjected to concentrated loads", J. Constr. Steel Res., 59(5): 561–86, 2003.
- [11] E.T. Fonseca, P.C. Vellasco, S.A. Andrade and M.M. Vellasco, "Neural network evaluation of steel beam patch load capacity", Adv. Eng. Softw., 34(11–12):763–72, 2003.
- [12] E.T. Fonseca, P.C. Vellasco, S.A. Andrade and M.M. Vellasco, "A patch load parametric analysis using neural networks", J. Constr. Steel Res., 59(2): 251–67, 2003.
- [13] E.T. Fonseca, S.A. Andrade and M.M. Vellasco, "A parametric analysis of the patch load behaviour using a neuro-fuzzy system", J. Constr. Steel Res., 63:194 – 210, 2007.
- [14] A. Cevik, "A new formulation for longitudinally stiffened webs subjected to patch loading", J. Constr. Steel Res., 63: 1328–40, 2007.
- [15] A. Cevik, M.T. Gogus, H.G. Ibrahim and F. Huzeyin, "A new formulation for longitudinally stiffened webs subjected to patch loading using stepwise regression method", Advances in Engineering Software, 41: 611–618, 2010.
- [16] European Committee for Standardization (CEN), "Design of steel structures-general rules", part 1.5, prENV 1993-1-5, 1997E, Eurocode 3, Brussels, 1997.
- [17] British Standards Institution (BSI), "Steel, concrete, and composite bridges", BS5400, Part 3, British Standards Institution, Milton Keynes, UK, 2000.

سعة تحمّل العوارض الصفيحية الحديدية المُصلَّبة احمد صكبان سعدون عبدالناصر محمد عباس علي عبدالحسن خلف قسم الهندسة المدنية، كلية الهندسة، جامعة البصرة. ali abd575@yahoo.com nasser21272@gmail.com ahmsag@gmail.com

الخلاصة

يهدف هذا البحث الى اقتراح نموذج بديل لتحديد الحمل الاقصى للعوارض الصفيحية المصلبة طولياً. استند النموذج المقترح على المعادلات وضعية وتحليل الانحدار وقد أُكِّدَت نتائجه مع قاعدة بيانات لعديد من النتائج المختبرية السابقة والمتوفرة. وتمت المقارنة بين النتائج المستحصلة من النموذج المقترح مع النتائج المستحصلة من استخدام المواصفات البريطانية (BS 5400). ولقد وُجِدَ بأن النموذج المقترح يعطي نتائج متوافقة جداً مع النتائج المختبرية وأعلى دِقَّة مما تعطيه المواصفات البريطانية.

كلمات الدالة: عوارض صفيحية، عوارض مُصلَّبة، سعة التحمل، تحليل الانحدار .