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Abstract 

Flexible Matrix Composite (F2MC) tubes are emerging technologies, which can provide 

lightweight, compact vibration control when attached to a vibrating structure. This work presents a new 

model for solving a problem of vibrations in cantilever beams with attaching F2MC tubes as patches that 

provide passive vibration control.  Mathematical model of the compound system of patches of F2MC 

tubes integrated on the beam was derived. The governing equations depend on Euler-Bernoulli beam 

theory and Lekhnitskii’s theory of elasticity. This study examined new model’s performance for damping 

with variation in tube size; bonding position of the patches on the beam in two different cases:  on the 

beam through changing the distance between two them; one patch above and the other under the beam. 

Analytical results demonstrate that the proper tuning the size of tubes as a function of inner layer radius; 

and integration points are basic parameters for passive vibration control. They achieve reductions in 

response amplitude at the first vertical bending mode effectively.  

Keywords:- Passive vibration controller, Fluidic flexible matrix composite tubes, Mathematical model, 

Damping, Frequency response function.  

Nomenclature 

d= the distance between the neutral axis of the 

tubes and the centerline of the beam. 

Ft1, Ft2= Extension force on the F2MC patches 

εr
i = Raidial strain of the inner layer. Gp=Transfer function of F2MC tubes 

εr
o =Raidial strain of the outer layer. L=Beam length 

εz
i = Axial strain of the inner layer. LFMC =Length of F2MC tube 

εz
m= Axial strain of the middle layer M1, M2= The moments that formulated on 

the patches. 

εθ
i =Tangential strain of the inner layer. P1= inner layer’s surface pressure 

εθ
m= Tangential strain of the middle layer. P2= Middle layer’s surface pressure 

εθ
o= Axial strain of the outer layer. P3=Outer layer’s surface pressure 

ε𝑟
m= Radial strain of the middle layer Po= Internal surface pressure (fluid pressure) 

σr
i= Radial stress of the inner layer. T=axial Force on the F2MC tube 

σr
o= Radial stress of the outer layer. T1, T2, T3= Individual forces on the layers of 

F2MC tubes. 

σz
o= Axial stress of the outer layer. y(x,t) =beam displacement 

σθ
i = Tangential stress of the inner layer. σ𝑧

i =axial stress of the inner layer. 

σθ
o= Tangential stress of the outer layer. Vi=initial volume of the F2MC tubes 
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1. Introduction 

In advanced applications, the design of some structures, such as those in spacecraft, jet fighters 

and automobiles which require lightweight strength and have highly structural damping properties, are 

faced with great difficulty due to the fact that the decreased weight results in low rigidity and reacts with 

vibration characteristics. Vibration must be effectively controlled, otherwise it could be uncomfortable 

for human beings, increase fatigue, cause instability and could result in damage to the entire system [1]. 

Tuned Vibration Absorbers (TVAs) are important engineering tools for vibration suppression. They can 

take the form of passive, semi-active or active vibration control devices[2].TVAs without damping that 

are composed of springs and mass elements can overcome a specific amount of disturbance[3]. 

In advanced technologies, various vibration control technics have been used in modern vibration 

control design for smart structures. Researcher [2], has been used Tuned Mass Dampers (TMDs) for 

controlling vibrations over a small frequency ranges. Damping treatment of cantilever beams had been 

studied by using electro-magnetic compressional damping treatment [4]. Another study[5], investigated 

a theoretical control technique using piezo ceramic sensors and actuators along with Multi Input and 

Multi Output Linear Quadratic Gaussian (MIMO LQG) controller. Experimental validations achieved 

that MIMO LOG controller was efficient for the suppression of vibrations on cylindrical shells by 13dB.  

Fluidic Flexible Matrix Composite (F2MC) tubes were made from a new type of lightweight and 

adaptive smart materials. They are economic, use readily-available materials. These tubes have great 

tailorability, high fluid pumping efficiency, and variable stiffness properties, with ease of integration on 

structures. They first discovered as variable volume tubes with large modulus ratios [6, 7]. The main 

parameters of a F2MC tube is the anisotropic composite laminated layer with fibres oriented at ±α with a 

longitudinal axis with their length.  The places that the tubes are bonded on the structures, and valve 

which controls a fluid flow also have an effective role for tailoring the tube’s behaviour. Philen, et al. [6] 

showed that by tailoring the fibre orientation and fluid bulk modulus, these tubes can work as flexible 

materials when the valve is open and as very stiff when the valve is closed. Ying Shan, et al. [8] 

investigated F2MC tubes for autonomous structural tailoring. A model of single F2MC tube has been 

analyse and validated experimentally. their results showed the maximum modulus ratio can be obtained 

by using a composite laminate fibre angle (α ≈ 20°), or decreasing the tube thickness, or  increasing the 

fluid bulk modulus. Vashisth, et al. [9] evaluated a three-layered F2MC tube which was two millimetres 

in diameter, consisted of polyurethane reinforced with braided stainless-steel wire in the middle layer, 

surrounded by polyurethane layers. Blocked force, free strain and axial modulus of elasticity has been 

examined. Lotfi-Gaskarimahalle, et al. [10] developed a 3D model for F2MC tubes and a lumped fluid 

mass as a novel TVA. It provided a close form of isolation frequency depending on the orifice flow 

coefficient and the orifice size. The results indicated that F2MC TVA is robust in terms of mass variations, 

and increasing damping ratios are achievable with increase in the orifice viscous damping. Philen [11] 

showed the F2MC tubes performance for base isolation mounts. Recently, through series investigations 

these tubes performance as vibration absorbers has been studied.  They has been connected with two 

fluidic circuits, the first damped out vibrations over 20dB by using orifice; the latter circuit used an inertia 

track and an accumulator, replaced the first mode resonance peak with a valley, reduced the resonant 

response by 27dB, [12]. This was followed by a design of  multi-layered F2MC patch fixed on a cantilever 

beam with a distance (𝑥1) far from the fixed end, [13]. Water was used as working medium. 

Investigations was made for different fluid bulk moduli, attachment location and flow coefficient. It 

achieved 32 and 16 percent damping ratio for first and second modes respectively. While, Krott, et al. 

[14] investigated the effect of tube compliance and volume change for these tubes. Their results showed 

that soft and thin tube bladders of F2MC can provide damping.  Miura, et al. [15] utilized an analytical 

model with Monte Carlo methods for vibration isolation in cantilever beams by using F2MC tubes, with 

modifications on fluidic circuit dimensions and F2MC tube attachment locations, the moment and shear 

transmission at the clamped end of the beam were reduced.  

This paper sheds a new light on damping treatment of cantilever beams by using passive vibration 

control. It re-examines the diameter of F2MC tubes by adding layer thickness ratios as a function of 

damping treatment for cantilevered structures. Within the framework of these criteria it evaluates two 

systems of F2MC tubes in two different new categories, which has not been studied before. First is by 

bonding the two patches on the beam with examining the distance between them. And the latter is by 

bonding one patch on the beam and the other under the  beam in various places. The mathematical model 
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presents a simple way for solving a complete system encompassing two F2MC tube patches. They are 

connected separately with orifice through accumulator, filled with fluid. Each patch contains one F2MC 

tube composed of three layers, the inner and middle layers are fiber reinforced laminate layers, with a 

liner outer layer. Both patches are integrated on the uniform cantilever beam. The system transfer 

function as a ratio of unit tip displacement per unit applied tip force was derived and plotted as Frequency 

Response Function (FRF). 

2. Mathematical modelling 

This study deals with integrating two patches of F2MC tubes on the uniform cantilever beam, each 

consists of a single tube of three layered F2MC tube. The first two respective layers are composite 

laminate fiber reinforced layers followed by an outer liner layer, surrounding a working fluid (glycerin). 

The patches are integrated above the beam, one after he other. Flow inside each of them is controlled by 

orifice through an accumulator. They are separated, the fluid inside them are not mixed together. they 

act as two separate fluidic systems to suppress vibrations that occur by beam bending with an action of 

applied point load. 

2.1. Beam model 

  The Figures 1 and 2 show the patches of F2MC tubes. They assumed stiff and fixed very well 

on the beam. So, when the applied load (F) acts on the beam. They remain fixed in their positions during 

bending of the beam. This bending due to extension of the F2MC tubes in each system by an amount of 

 (Ft1, and Ft2 ), and each results a formulation of a moments (M1) and (M2) in F2MC tubes bonding 

position as; 

 M1=Ft1×d 
   

(1) 

 M2=Ft2×d (2) 

Using Euler-Bernoulli beam theory the governing equations of transverse displacement y(x,t) is 

formulated as: 

 
m

d
2
y

dt
2

+B
dy

dt
+EI

d
4
y

dx
4

=0 for  x∈(0,L). (3) 

Where  

 m=ρ×b×h (4) 

Taking the Laplace transform, and solving for zero initial conditions  

 
ms2Y+BsY+EI

d
4
Y

dx
4

=0 (5) 

And rearranging  

 d
4
Y

dx
4

-β
4
Y(x)=0  (6) 

Where 

 
β

4
=

s2m+sB

EI
 (7) 
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Fig.1 F2MC tubes Integrated on cantilever beam. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Free body diagram of cantilever beam with integrated F2MC tubes, explaining forces, 

moments and attaching tubes locations on it. 

The generalized solution of the beam has five domains: 

 

Y=

{
 
 

 
 

Y1(x,s)=A1sinβx+A2cosβx+A3sinhβx+A4coshβx, for  xϵ(0,x1)

Y2(x,s)=B1sinβx+B2cosβx+B3sinhβx+B4coshβx, for  xϵ(x1,x2) 

Y3(x,s)=C1sinβx+C2cosβx+C3sinhβx+C4coshβx , for xϵ(x2,x3)

Y4(x,s)=D1sinβx+D2cosβx+D3sinhβx+D4coshβx, for xϵ(x3, x4)

Y5(x,s)=E1sinβx+E2cosβx+E3sinhβx+E4coshβx, for xϵ(x4, L)

 (8) 

The constants An, Bn, Cn Dn, and En for(n=1, 2, 3, 4) are found by using beam boundary conditions, [16]: 

In the left side of the beam (x=0) the beam is  

clamped, so  

 Y1(0,s)=0, (9) 

 Y1'(0,s)=0. (10) 

Moment balance at x=x1 

 EI(Y2''(𝑥1,s)-Y1''(𝑥1,s)=M1(s) (11) 

where M(s)= ℒM(t),  by continuity 
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 Y1(𝑥1,s)=Y2(𝑥1,s) (12) 

 Y1'(𝑥1,s)=Y2'(𝑥1,s) (13) 

 Y1'''(𝑥1,s)=Y2'''(𝑥1,s) (14) 

Moment balance at x=x2 led to  

 EI(Y2''(𝑥2,s)-Y3''(𝑥2,s)=M1(s) (15) 

and the continuity due to  

 Y2(𝑥2,s)=Y3(𝑥2,s) (16) 

 Y2'(𝑥2,s)=Y3'(𝑥2,s) (17) 

 Y2'''(𝑥2,s)=Y3'''(𝑥2,s) (18) 

Moment balance at x=x3   

 EI(Y4''(𝑥3,s)-Y3''(𝑥3,s)=M2(s) (19) 

and the continuity due to  

 Y3(𝑥3,s)=Y4(𝑥3,s) (20) 

 Y3'(𝑥3,s)=Y4'(𝑥3,s) (21) 

 Y3'''(𝑥3,s)=Y4'''(𝑥3,s) (22) 

Moment balance at x=x4   

 EI(Y4''(𝑥4,s)-Y5''(𝑥4,s)=M2(s) (23) 

and continuity gives 

 Y4(𝑥4,s)=Y5(𝑥4,s) (24) 

 Y4'(𝑥4,s)=Y5'(𝑥4,s) (25) 

 Y4'''(𝑥4,s)=Y5'''(𝑥4,s) (26) 

At free end, x=L 

 EIY5'''(L,s)=F(s) (27) 

 EIY5''(L,s)=0 (28) 
 

2.2. Three layered F2MC tube model 

 Figure (1) shows that the patches are integrated on the beam. Each patch consist of a pair of F2MC 

tubes connected in parallel. The F2MC tube is modelled as a structure that consists of three coaxial 

boundless length hollow cylinders perfectly bonded together: the inner and middle cylinders are FMC 

laminate, both are made from polyacrylonitrile-based carbon fiber. They are orthotropic, with reinforcing 

fibres oriented at ±α to the axial direction of the tube; the outer liner cylinder is made from polyurethane 

(Fig.3). Each cylinder represents a layer, and the radii of layers from inside to outside are c1, c2,
c3 and c4 respectively. The axial force exerted on the F2MC tube balances the force on the individual 

tube layers, 

 T=T1+T2+T3 (29) 

For two layered F2MC tubes, the axial force can be found by summing only T1 and T2. 
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2.2.1. Inner and middle layers 

Figure 3 highlights that the FMC inner layer is subjected to axial force  (T
1
), internal surface 

pressure (p
o
) and external surface pressure( p

1
). The axial force is: 

 
T1=2π ∫ σz

i cdc,

c2

c1

 (30) 

Where σz
i  represents the axial stress in the inner layer.   

Furthermore, Lekhnitskii’s elasticity solution for homogenous orthotropic cylinders was used to 

find the generalized stress distributions[17], as: 

σr
i=

p
0
ak+1-p

1

1-a2k
μk-1+

p
1
ak-1-p

0

1-a2k
ak+1μ-k-1+AhK1, (31) 

σθ
i =

p
0
ak+1-p

1

1-a2k
kμ

k-1
-
p

1
ak-1-p

0

1-a2k
ka

k+1
μ-k-1+AhK2, (32) 

σz
i = A −

1

b33
(b13σr

i + b23σθ
i ), (33) 

    

Where r, θ  and z indicate radial, hoop and axial directions (Fig.3), 

 a=
c1

c2

, (34) 

 μ=
c

c2
, (35) 

 

k =√
 β

11

β
22

, (36) 

 h=
b23-b13

β11-β22

,                                                                                                                                                                   (37) 

Fig. 3 Sketch of F2MC tube with dimensions and loads on layers. 
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β
11

=b11-
b13

2

b33

, (38) 

 
β

22
=b22-

b23
2

b33

, (39) 

 
K1=1-

1-ak+1

1-a2k
μk-1-

1-ak-1

1-a2k
ak+1μ-k-1], (40) 

 
K2=1-

1-ak+1

1-a2k
kμk-1+

1-ak-1

1-a2k
ka

k+1
μ-k-1],                                                                                                                            (41) 

The bijterms are three-dimensional effective compliance constants found from the homogenous 

properties of the inner layer in the cylindrical coordinate system [18, 19]. The transversely isotropic 

unidirectional reinforced (+α) and (−α) sub-layers are assumed for calculating the homogenous 

properties of ±α composite layers. Therefore, the layers have five independent elastic constants: 

longitudinal and transverse modulus of elasticity E11, E22, Poisson’s ratio ν12and ν23 and longitudinal 

shear modulus of elasticity G12. Solving the equations (30-33) lead to finding the parameter (A) as a 

function of ( T1, p0 and p1). The strain distributions for the inner composite layer are: 

 εr
i=b11σr

i+b12σθ
i +b13σz

i , (42) 

 εθ
i =b12σr

i+b22σθ
i +b23σz

i , (43) 

 εz
i =b13σr

i+b23σθ
i +b33σz

i , (44) 

Similarly, the axial force (T2), stresses (σr
m, σθ

m, σz
m) and strains (εr

m, εθ
m, εz

m) for the middle 

reinforced layer are found by replacing (T1, p0, p1, c1 and c2) with (T2, p1, p2, c2 and c3) respectively in 

Eqs. (30-44). 

2.2.2. Outer layer 

This layer is modelled as an infinitely long isotropic hollow cylinder with an axial force (T3), 
inside and outside surface pressures (p2) and (p3 = 0) (Fig. 3). Therefore, relying on [20], the stress 

distributions are:  

 
σr

o=
p

2
c3

2-p
3
c4

2

c4
2-c3

2
-

c3
2c4

2(p
2
-p

3
)

c2(c4
2-c3

2)
, (45) 

 
σθ

o=
p

2
c3

2-p
3
c4

2

c4
2-c3

2
+

c3
2c4

2(p
2
-p

3
)

c2(c4
2-c3

2)
, (46) 

 
σz

o=
T3

π(c4
2-c3

2)
, (47) 

The strains in each direction can be obtained by using Hooke’s law: 

 εr
o=

1

Eo
[σr

o-νo(σθ
o+σz

o)], (48) 

 εθ
o=

1

Eo
[σθ

o-νo(σr
o+σz

o)],                                                                                                                                                (49) 

 εz
o=

1

Eo
[σz

o-νo(σθ
o+σr

o)],                                                                                                                                                (50) 

Where (EoEo) and (νo) are Young’s modulus of elasticity and Poisson’s ratio for polyurethane 

respectively. 

2.3. Equilibrium equations 

In this model, each F2MC patch follows a plain strain solution, as the beam extends uniformly in 

an axial direction, therefore:   

 εz
i =εz

m, (51) 
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 εz

m=εz
o. (52) 

At the interface between any two layers the hoop strains are identical, 

 εθ
i|

c=c2
= εθ

m|c=c2
 (53) 

 εθ
m|c=c3

 =  εθ
o|c=c3

 

 
(54) 

The axial force on each F2MC patch balances the loads on the end of the F2MC tube, 

 
T1=

Ft1
N

+ p
o
πc1

2 (55) 

 
T2=

Ft2
N

+ p
o
πc1

2 
(56) 

Where (po) is fluid pressure inside the tubes and (N) is the number of tubes. By given geometry 

and material properties (Table 1), the axial and hoop strains of the inner layer can be calculated by solving 

Eq. (51-56) as functions of (T and p0) as    

 εθ1|r=c1
=∅1T1+∅2p

0
 (57) 

 εθ2|r=c1
=∅1T2+∅2p

0
 (58) 

And 

 εz1=∅3T1+∅4p
0
 (59) 

 εz2=∅3T2+∅4p
0
 (60) 

where εθ1, εθ2,εz1, and εz2 are strains in hub and axial directions for first and second patches 

respectively, and  ∅1,∅2, ∅3 and  ∅4 are constants representing the geometry and material properties of 

the F2MC tubes for all patches. 

Table 1 Model parameters and material properties of F2MC tubes 

Parameter Symbol Quantity 

Fiber reinforced layer   

Longitudinal modulus of elasticity (GPa) E11 40 

Transverse modulus of elasticity (MPa) E22 1.8 

Poisons ratio v12 0.33 

Poisons ratio v23 0.39 

Modulus of rigidity (MPa) G12 1.4 

Fiber angle (°) α ±27 

Liner Layer 

Modulus of elasticity (MPa) Eo 11MPa 

Poisons ratio vo 0.498 

F2MC tube geometry and integration points 

Inner layer internal radius(mm) c1 1 mm, (0.5-10) mm   

Middle layer internal radius (mm) c2 1.7 c1 

Outer layer internal radius(mm)  c3 1.8 c1 

Outer radius (mm)   c4 2.105 c1 
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Length of first patch of F2MC tube’s (mm) 

Length of second patch of F2MC tubes(mm) 

LFMC1 

LFMC2 

x1-x2, 

x3-x4 

Attaching points: x1 0 

 x2 75mm 

 x3 (110-140) mm 

 x4 (185-215) mm 

Beam geometry   

Hight (mm) h 1.6 

Width (mm) b 26 

Length (mm) L 310 

Beam material Aluminium  

Modulus of elasticity (GPa ) E 70 

Damping constant (N s/m) C 0.2 

Density (kg/M3)  2700 

Fluid properties 

Type of fluid  glycerine  

Density (kg/M3)  𝜌 1260  

Bulk modulus (gpa) B 4.35  

Accumulator capacitance (m3/Pa) Ca 1.5 × 10−9  

Flow coefficient (m3/s Pa) Cd 2 × 10−13 

 

2.4. Fluid Behavior  

The study includes multi-F2MC patch model in a closed valve scenario. It is assumed that the 

tubes are filled with fluid, which are tight with no differential pressure with the bulk modulus (B) and 

volume of (Vi). When the force (F) is applied, the volume of the F2MC tubes changes by the amount of 

(∆Vf) with the formation of (Ft1, and  Ft2). Depending on the volume change, the fluid differential 

pressure changes from zero to ( p
0
). For first patch, this can be expressed as:  

 (
∆Vf

Vi1
)B=-p

0
, (61) 

But the volume change of F2MC tube is defined as:  

 ∆V1=V1-Vi1,   (62) 

Where 

 V1=π[(1+εθ1|r=c1
)c1]

2
(x2-x1)(1+εz) , (63) 

 Vi1=π𝑐1
2(x2-x1). (64) 

For second patch, the procedure is the same only the bonding positions are changed: 

 ∆V2=V2-Vi2,   (65) 

 V2=π[(1+εθ2|r=c1
)c1]

2
(x4-x3)(1+εz), 

(66) 

 Vi2=πc1
2(x4-x3). (67) 
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Then, the volume ratio for each F2MC patch can be written as:  

  ΔV1

Vi1

=
Vi1-V1

Vi1

≅εz1+2εθ1|r=c1
, (68) 

  ΔV2

Vi2

=
Vi2-V2

Vi2

≅ εz2+2εθ2|r=c1
 (69) 

 The fluid volume that is pumped out of the first and second patches, which are composed of (N) 

tubes, was assumed as the fluid volume flow rate and expressed as  

 Q
v1

= -N(∆V1-∆Vf). (70) 

 Q
v2

= -N(∆V2-∆Vf). (71) 

By substituting each of  ∆Vf and ∆V1and ∆V2 from equations (61), (62) and (65) respectively, 

yields  

 Q̇v1=NFQṪ+NGQp0̇ = Q̇v2 (72) 

Where  

 GQ=-(2∅1+∅3)Vin (73) 

 
FQ=-(∅2+2∅4+

1

B
)Vin (74) 

here Vin = Vi1 or Vi2 , depending on the selected patch.  

As the fluids inside both patches are the same type with the same configuration, the fluid volume 

flow rate balances the change in fluid pressure inside the orifice and accumulator by,  

 Q
v
=Cd(p

0
-p

A
) (75) 

And    

 Q
v
=CapȦ (76) 

Where (pA) is the internal pressure of the accumulator, (C
d
) the flow coefficient and ( Ca)  is the 

accumulator capacity. 

2.5. Over all system’s transfer function  

The transfer function of patches can be determined by the ratio of the axial strain to the axial force 

by solving each of equations (55), (59), (72), (75), and (76), also (56), (60), (72), (75), and (76) in the 

Laplace domain with zero initial conditions for first and second patches respectively as follows: 

 εz1(s)= Gp(s)Ft1(s),      (77) 

 εz2(s)= Gp(s)Ft2(s) (78) 

Where 

 
Gp(s)=

(c
a
s+cd)(∅3FQ-∅4GQ)-θ3cacd/N

N(c
a
s+cd)(FQ+πc1

2GQ)-cacd

 
 

(79) 

As required by Lekhnitskii’s theory of elasticity [17], the patches stretch uniformly in an axial 

direction, and the total F2MC tube patch elongation can be calculated as, 

 
∆L1(s)=LFMC1εz1(s)= -d(

dY2(s)

dx2
−

dY2(s)

dx1
), (80) 

 
∆L2(s)=LFMC2εz2(s)= -d(

dY4(s)

dx4
−

dY4(s)

dx3
), 

(81) 

Where  LFMC1=(𝑥2-𝑥1), and LFMC2=(𝑥4-𝑥3) 
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Substituting (Ft1) and (d) in Eqs. (77, 80) into Eq. (1) then solving for moment (M1), and 

substituting (Ft2) and (d) in Eqs. (78, 81) into Eq. (2) then solving for moment (M2), yield the following 

equations: 

 
M1(s)=

1

U1(s)
[
dY2(s)

dx2
-
dY2(s)

dx1
],  

 M2(s)=
1

U2(s)
[
dY4(s)

dx4
-

dY4(s)

dx3
],     

(82) 

Where  

 U1(s)=
LFMC1

d
2 Gp(s) , U2(s)=

LFMC2

d
2 Gp(s) (83) 

Now, substituting equation (82) into the constant’s equations (9 –28)the following expression can 

be obtained: 

 J w=b F(s),    (84) 
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Where 

 

J=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J31 J32 J33 J34 J35 J36 J37 J38 0 0 0 0 0 0 0 0 0 0 0 0

J41 J42 J43 J44 J45 J46 J47 J48 0 0 0 0 0 0 0 0 0 0 0 0

J51 J52 J53 J54 J55 J56 J57 J58 0 0 0 0 0 0 0 0 0 0 0 0

J61 J62 J63 J64 J65 J66 J67 J68 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 J75 J76 J77 J78 J79 J710 J711 J712 0 0 0 0 0 0 0 0

0 0 0 0 J85 J86 J87 J88 J89 J810 J811 J812 0 0 0 0 0 0 0 0

0 0 0 0 J95 J96 J97 J98 J99 J910 J911 J912 0 0 0 0 0 0 0 0

0 0 0 0 J105 J106 J107 J108 J109 J1010 J1011 J1012 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 J119 J1110 J1111 J1112 J1113 J1114 J1115 J1116 0 0 0 0

0 0 0 0 0 0 0 0 J129 J1210 J1211 J1212 J1213 J1214 J1215 J1216 0 0 0 0

0 0 0 0 0 0 0 0 J139 J1310 J1311 J1312 J1313 J1314 J1315 J1316 0 0 0 0

0 0 0 0 0 0 0 0 J149 J1410 J1411 J1412 J1413 J1414 J1415 J1416 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 J1513 J1514 J1515 J1516 J1517 J1518 J1519 J1520

0 0 0 0 0 0 0 0 0 0 0 0 J1613 J1614 J1615 J1616 J1617 J1618 J1619 J1620

0 0 0 0 0 0 0 0 0 0 0 0 J1713 J1714 J1715 J1716 J1717 J1718 J1719 J1720

0 0 0 0 0 0 0 0 0 0 0 0 J1813 J1814 J1815 J1816 J1817 J1818 J1819 J1820

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J1917 J1918 J1919 J1920

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J2017 J2018 J2019 J2020]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,w=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

D1

D2

D3

D4

E1

E2

E3

E4]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   b=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
1

EIβ
3

0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (85) 

And 

J31=U1EIβSβx1 J41=Sβ𝑥1      J51 = Cβ𝑥1 J61= − Cβx1 

J32=U1EIβCβx1 J42=Cβ𝑥1 J52 = −𝑆β𝑥1 J62=Sβx1            

J33= − U1EIβShβx1 J43=Shβ𝑥1 J53 = Chβx1 J63=Chβx1 

J34= − U1EIβChβx1 J44=Chβ𝑥1 J54 = Shβx1 J64=Shβx1 

J35= − U1EIβSβx1 − Cβx2+Cβx1   J45= − Sβ𝑥1  J55 = −Cβ𝑥1  J65=Cβx1 

J36= − U1EIβCβx1+Sβx2 − Sβx1 J46= − Cβ𝑥1 J56 = 𝑆β𝑥1 J66= − Sβx1 

J37=U1EIβShβx1 − Chβx2+Chβx1 J47= − Shβ𝑥1 J57 = −Chβx1 J67= − Chβx1 

J38=U1EIβChβx1 − Shβx2+Shβx1 J48= − Chβ𝑥1 J58  = −𝑆ℎβ𝑥1 J68= − Shβx1 

J75= − U1EIβSβx2 − Cβx2+Cβx1 J85 = Sβx2 J95=Cβx2  J105= − Cβx2 

J76= − U1EIβCβx2+Sβx2 − Sβx1 J86 = Cβx2 J96= − Sβx2       J106=Sβx2 

J77=U1EIβShβx2 − Chβx2+Chβx1 J87 = Shβx2 J97=Chβx2 J107=Chβx2 

J78=U1EIβChβx2 − Shβx2+Shβx1 J88 = Chβx2 J98=Shβx2 J108=Shβx2 

J79= U1EIβSβx2 J89 = −Sβx2  J99= − Cβx2   J109= Cβx2  

J710= U1EIβCβx2 J810 = −Cβx2 J910=Sβx2 J1010= − Sβx2 

J711= − U1EIβShβx2 J811 = −Shβx2 J911= − Chβx2 J1011= − Chβx2 

J712= − U1EIβChβx2 J812  = −Chβx2 J912= − Shβx2 J1012= − Shβx2 

J119 =  U2EIβSβx3 J129=Sβx3 , J139=Cβx3 J149 = −Cβx3 

J1110 = U2EIβCβx3 J1210=Cβx3             J1310=− Sβx3 J1410 = Sβx3 

J1111 = −U2EIβShβx3 J1210=Shβx3             J1311=Chβx3 J1411 = Chβx3 

J1112 = −U2EIβChβx3 J1212=Chβx3 J1312=Shβx3 J1412 = Shβx3 

J1113 = −U2EIβSβx3 − Cβx4 + Cβx3 J1213=− Sβx3 J1313= − Cβx3  J1413 = Cβx3, 

J1114 = −U2EIβCβx3 + Sβx4 − Sβx3 J1214=− Cβx3 J1314= Sβx3 J1414 = −Sβx3 

J1115 = U2EIβShβx3 − Chβx4 + Chβx3 J1215=− Shβx3 J1315= − Chβx3 J1415 = −Chβx3 

J1116  = U2EIβChβx3 − Shβx4 + Shβx3 J1216=− Chβx3 J1316= − Shβx3 J1416  = −Shβx3 

J1513=− U2EIβSβx4 − Cβx4 + Cβx3 J1613=Sβx4 J1713=Cβx4 J1813=− Cβx4 

J1514=− U2EIβCβx4 + Sβx4 − Sβx3 J1614=Cβx4 J1714=− Sβx4 J1814=Sβx4 

J1515=U2EIβShβx4 − Chβx4 + Chβx3 J1615=Shβx4 

 

J1715=Chβx4 J1815=Chβx4 
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J1516=U2EIβChβx4 − Shβx4 + Shβx3 J1616=Chβx4 J1716=Shβx4 J1816=Shβx4 

J1517=U2EIβSβx4 J1617= − Sβx4  J1717= − Cβx4  J1817= Cβx4  

J1518=U2EIβCβx4 J1618= − Cβx4 J1718= Sβx4 J1818=−  Sβx4 

J1519=− U2EIβShβx4 J1619= − Shβx4 J1719= − Chβx4 J1819= − Chβx4 

J1520=− U2EIβChβx4 J1620= − Chβx4 J1720= − Shβx4 J1820= − Shβx4 

J1917=− EICβL J2017=− EISβL   

J1918=EISβL J2018=− EICβL   

J1919=EIChβL J2019=EIShβL   

J1920=EIShβL J2020=EIChβL   

Where S, C, Sh, Ch, U1, and U2 are sin, cos, sinh, cosh, U1(s), and U2(s) respectively. 

The total deflection at the free end of the beam is 

 Y(L,s)= E1sinβL+E2cosβL+E3sinhβL+E4coshβL (86) 

In addition, the overall transfer function of the F2MC structure is  

 Y(L,s)

F(s)
=awJ-1b=H(s) (87) 

With 

aw=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  sinβL   cosβL sinhβL coshβL], 
and the FRF is represented by |H(jω)|. 

3. Model validation 

As producing F2MC tubes samples are difficult. It requires sophisticated devices because of their 

size and layer thickness, the derived model validated theoretically by performing some illustrative 

examples and the results were compared with the existing data available in the literature to demonstrate 

the accuracy of the present model. As an example, comparisons are made between the FRF plot obtained 

from the previous studies [13] for a patch of F2MC tubes integrated on the cantilever beam (Fig. 4). It 

could be seen, the present results are in well agreement with similar ones available in previous studies in 

the reference, which had been agreed with their experimental validations. This agreement improved the 

proposal of a new model, strong enough to be used for future studies. Then this model has been modified 

for two patches of the tubes integrated on the beam instead of one. 
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4. Parametric studies 

4.1 Studying the integration points of the second patch  

In a previous study of F2MC tubes, the integration points of a single patch of F2MC was concluded 

with sensible reduction in amplitude of vibration in FRF plot. This was obtained by locating the first 

bonding position (x1) on the fixed end of the beam [13]. Because in this point maximum moment was 

recorded. This study aimed to achieve higher reductions in amplitude of resonance in the first mode 

shape, by integrating two similar patches (LFMC1=LFMC2=75 mm) of F2MC tubes.  The first patch’s 

integration point (x1=0, x2=75mm) is fixed, because of achieved results in the literature. While, the 

second patch’s integration points have been examined. The study started with integrating it on the free 

end of the beam (x3=235, x4=310) then these values were reduced enough to make the two patches close 

to each other. The minimum possible studied distance between the patches was (35 mm). As the patches 

being closer to each other more damping was obtained, because as the patches are bonded on the positions 

near to fixed end of the beam. The transverse vibrations that obtained by beam bending will lead to 

increase in the fluid flow into the patches then the volume of the tubes is expanded and damping would 

increase. Whereas, when the second patch was so far from the first patch (on the free end), the fluid 

entering into the second patch is eliminated, thus the beam damped under the action of only one patch, 

and the undamped vibrations were recorded. Figure 5, shows the reductions in the first mode shape’s 

resonance amplitude with reducing the distance (x) between the patches. The distance (x) is directly 

proportional with amplitude of resonance and inversely proportional with frequency of resonance. This 

result was supported by other researchers, [21]. In contrast, by reducing the distance between the two 

F2MC tube patches, the reduction achievement in first mode amplitude was 7.25dB with 4.55 Hz wider 

resonance frequency. The maximum reduction in pick amplitude was obtained with the smallest distance 

between the two patches, which was plotted by solid line in the Fig 5. With this distance, the recorded 

amplitude of first mode shape was -50.3dB, which is  larger than the reductions recorded by Zhu et al. 

through getting benefit of inertia track length. [22]. The present model in this paper is more efficient in 

reducing vibrations with regard to sizes used, as compared with study done by  Krott, et al. [14]. While 

comparing this result with reduction obtained  by Multi Input Multi Output Linear Quadratic Gaussian 

Controller MIMI-LQG, the present reduction was greater than MIMO-LQG controller [5]. 

After fixing the distance between the patches, then the next step is examining the integration of 

the second patch under the beam with two configurations: in the same integration point with the first 

patch (x1=x3=0, x2=x4=75mm); and at the fixed distance (x=35mm) between the patches. The 

mathematical modelling of the system with patches under the beam follows the same procedure listed in 

section 2. Only their will be a change in sign of the second patches’ transfer function Eqs. (82-83). It 

defines as U2(s)=
−LFMC2

d
2 Gp(s). This outline contributed significant vibration suppression in terms of the 

peak amplitude reduction in FRF during comparison with a patch contains pair of F2MC tubes [12], 

which was assumed as base line model in Fig. 6. The comparison of each studied cases with base line 

model shows that, the first configuration reduced first resonance amplitude by 9.44 dB, with a very small 

reduction in its frequency, whereas, the second configuration achieved significant reductions in both 

amplitudes and frequency of resonance in all mode shapes. As it can be notified from the Fig.6 the first 

mode shape’s reductions in amplitude and frequency of resonance are 10.12 dB and 11.4Hz, respectively 

with second mode shape’s overall gain reduction. 
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Authors in this study relating the resulted reductions to the positions that the patches have been 

integrated with the beam.  In the first case study the second  patches’ bonding points comes in agreement 

with the results that previously discussed that vibration elimination by damper would be more powerful when 

dampers installed in the locations with maximum mode displacement happens,[23].   

On the other hand, when the two configurations of integrating the patches under the beam are 

compared with a model of integrating the patches on the beam, the comparison result in Fig. 7 shows the 

similar responses in first mode shape between integrating the patches above and under the beam. In both 

cases the integration points were the same (x1=0, x2=75, x3=110, and x4=185 mm), the only difference was 

in the second patches’ place (above or under the beam) which results in change in sign of Eq. (82-83) as 

explained before. As it can be notified from mathematical modelling, in the case of bonding the patches on 

the beam, both patches will elongate in the same direction and producing different moments, while in the 

case of integrating one above and the other under the beam, the second patch will act under compression 

which directly reduces the amplitudes of mode shapes, This change in the second patches transfer function 

might has direct effect on reducing the resonance amplitudes that recorded. Joining the F2MC tube patches 

above the beam is good for reducing amplitude of vibrations. In the case of using the tubes in low frequency 

range applications, integrating the patches as first configuration is better to be avoided, Fig.7. Furthermore, 

when a pair of F2MC tubes was used in each path and compared with previous case, when single tubes were 

used. The resulted plot shows that single tubes highlight lower amplitudes of resonance in all mode shapes 

as compared a pair of tubes. The reason of this behavior is due to the lower pressure generation of fluid inside 

the tubes, because the same amount of fluid would enter two tubes instead of one. The fluid distribution 

between the two tubes, directly reduced the amount of fluid flow entering each tube and minimizes the 

moments M1 and M2 that found in bonding points; following a resulted  lower beam damping (Fig.8). 
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Fig. 5 Zoomed view for the first mode shape in 

FRF response of two patches bonded on the 

cantilever beam, the first patch fixed whereas the 

second patch’s integration point was varied; solid 

line for the distance between the patches x=35mm, 

dashed for x=45mm, dash-dotted for x=55mm, 

and dotted for x=65mm. 

Fig. 6 FRF response of two patches integrated 

under the beam: 1st configuration (solid) on the 

same axis, x1=x3=0, x2=x4=75mm. and 2nd 

configuration (dashed), on the different axis, x1=0, 

x2=75mm, x3=110mm and x4=185mm. Base line 

model (dash-doted), one patch of a pair F2MC tubes 

bonded on the beam, x1=0, x2=150mm. 
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Figure 7 FRF response comparison between the two configurations with a model of two 

patches integrated on the beam: (A) Normal view, (B) zoomed view of 1st and 2nd mode 

shapes. 
 

4.2 The size of F2MC tubes 

This case deals with the second configuration model when the patches bonded one above and the other 

under the beam with bonding locations x1 = x3 = 0; and   x2 = x4 = 75mm, respectively. Fabrication  of 

F2MC tubes with a very small size are practically difficult [14]. For this reason, the authors examined bigger 

sizes that practically possible to be produced. The F2MC tubes with different sizes have been examined, the 

tubes’ inner radius from (0.5-10 mm) are studied, for each value of inner radius (c1), the other radii, c2, 

c3, and c4 were selected as:1.7c1,1.8c1, and 2.105c1  respectively. Figure 9 shows the integrated system’s 

FRF response for several values of c1, it can be notified that by reducing the inner radius from 10mm to 1 

mm, the first resonance amplitude of the response is decreased by 8 dB (24% reduction achieved) with 

shifting resonance frequency by 2 Hz. This result is acknowledged by another study, through examining the 

ways for obtaining maximum modulus ratio, which is due to shrinkage in longitudinal strain, and increasing 

F2MC tubes axial strain. It increases the moments in the tubes bonding locations with the cantilever beam as 

in Eq. (1, 2 and 82). In addition to more fluid entrance to the F2MC tubes and higher internal pressures (Eq. 

61), [24]. But further reducing inner radius (c1) to 0.5 mm, the tube’s internal cavity was restricted so much, 

blocked the fluid flow into the tubes due to a low generation of pressure difference, so, the tube’s ability to 

dissipate energy was lost. Because the tube walls have high authority to volume change [25], the resulted 

first resonance amplitude of the response was 4 dB higher, but the second amplitude reduced clearly with an 

overall gain reduction by 5Hz. 
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Fig. 8 FRF response of the system of two 

patches integrated above the beam, with 

different number of tubes: solid line for single 

tubes were used, and dashed for a pair of tubes 

used in both patches. 

 

Fig. 9 FRF response of two patches of F2MC tubes 

integrated on the cantilever beam, with  different 

tube sizes: inner radius c1 = 0.5mm(dotted), 1mm 

(solid),2mm(dash-dotted), 5mm(dashed), and 

10mm(dash-double dotted), the other radii c2, 

c3, and c4 are selected as 1.7c1,1.8c1, and 2.105c1  

respectively. 

Conclusion 

In spite of most recent studies dealing with vibration control of cantilever structures focused active or 

semi-active vibration control, this study shaded a new light on damping treatment of cantilever beams by 

using passive vibration control. It analyzed a new approach for using F2MC tubes by integrating them as two 

separate patches above or under cantilever beams. It presented a simple way for mathematical modelling 

multi patches integrated on cantilever beam in different locations. A model of pair of F2MC tubes was 

modified to study two patches of single F2MC tube with their exactly half of length of single patch. Increasing 

the number of F2MC patches for controlling vibrations gives more desirable results than connecting several 

F2MC tubes inside one patch. The present study took benefit from selected layer thickness ratio for examining 

the sizes of F2MC tubes. Choosing the patch’s joining points depends on the parameters that requested for 

controlling. For managing resonance frequency, it is better to bond the patches above and under the cantilever 

structures, but for reducing amplitude of vibrations, integrating the patches on the beam is the best choice.  
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