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Abstract

The dramatic evolution of limited-resource hardware such as microcontrollers in
conjunction with the development of machine learning algorithms has helped open doors to
building smart devices in industrial sectors. Predictive maintenance is one of these sectors that
uses smart devices efficiently. Vibration data such as data collected from accelerometers can
capture precisely any change in moving machine behavior due to mechanical wearing in moving
parts such as bearings. In this work, a deep learning one-dimensional convolutional neural
network (1DCNN) classifier is built as a fault detector and tuned to enhance detection
performance. This classifier is tested using a publicly available vibration dataset for three types
of rotating bearing status (healthy, inner race fault, and outer race fault). The classifier is
designed using a tiny machine-learning framework, which can be implemented using a
microcontroller with limited resources. The accelerometer data is preprocessed using a
spectrogram of a vibration signal to extract frequency-time-related features to enhance classifier
performance. Moreover, the classifier is quantized using an eight-bit integer to reduce calculation
time and required memory. TinyML framework environment handles the building of the ternary
classifier and helps to implement this classifier on limited resources hardware. This ternary
classifier achieves accurate results with an accuracy of 98.64% and F1 score of 0.99. However,
these accurate results were achieved using minimal resources of an Arduino microcontroller with
a RAM of 8.3kb and a latency of 20ms.

Keywords: TinyML; Vibration; Limited resources hardware; CNN.
I. Introduction:

Industry 4.0 leverages many important aspects such as predictive maintenance, fault
detection, and anomaly detection based on advanced technologies such as machine learning
(ML), Internet of Things (IoT), and big data analytics. These new technologies facilitate the way
for continuous monitoring and analysis of equipment conditions, enabling the early detection of
potential failures before they occur improving the chances for workflow, and reducing downtime
of industry processes. Machine learning algorithms, including deep learning, ensemble methods,
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and anomaly detection, have been shown to effectively predict maintenance requirements by
analyzing sensor and operational data, although challenges such as data quality and model
generalization remain [1] [2].

Electric motors are an essential part of each factory and industry sector and this raises the
need to guarantee the continuous operation of these parts by using smart and low-cost fault
detection techniques. Deep learning algorithms such as Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) have gained a reputation for being used in prediction
maintenance and fault detection solutions, especially when these solutions must be implemented
with limited resources and hardware. Machine learning algorithms are known to be data-driven
models and their performance is significantly affected by data size and type including data
collection tool and noise behind that. So, it is very important to choose training raw data
carefully including spatiotemporal patterns generated from faults in electrical motors. Recently,
many researchers have developed and optimized deep learning algorithms that can fit
microcontroller unit (MCU) resources to cover the large need for fault detection devices. The
researchers are trying hard to balance between MCU and RAM constraints from one side and
detector performance from the other side [3]. Overall, deep learning contributes to fault analysis
and detection across different electrical motors and mechanical systems overcoming traditional
techniques that use manual analysis and rely on experts’ knowledge [4]. However, while deep
learning achieves remarkable progress in the fault detection field, especially with deployments
on limited resources hardware, there are still serious challenges that need to be addressed and
solved to be widely and confidently used in the industry. One of these challenges is the need for
large amounts of data to train deep learning algorithms such as CNNs to achieve the required
accuracy. Usually, it is not very affordable to build large datasets that can cover all types of
faults including all types of electrical motors which leads to unreliable fault detection outcomes.
This untrusted model may raise serious concerns about relying on deep learning approaches in
fault detection models which is critical in safety-sensitive applications. Additionally, deploying a
deep learning model on resource-constrained hardware like MCUs may not always offer the
required performance, so a tradeoff between performance and resource consumption always
needs to be handled carefully [5].

In this work, a lite deep learning algorithm is tuned and optimized using a publicly
available dataset for ball-bearing fault detection. The model is successfully quantized using an
integer 8 quantizer and tuned to reduce its size and computational power needed to fit the low-
cost and resources-constrained microcontroller. The proposed model was successfully deployed
on the Arduino 33BLE Arduino board and gained an accurate detection rate. Additionally, the
time-frequency feature generation stage is used to enhance the classification performance of the
three-classes model. The proposed framework optimizes hardware resources and three-classes
model performance. The remainder of the research paper is as follows: section Il overviews
related work, section 11l explains in detail aspects and background theory behind vibration-
related fault detection framework, then Section IV overviews and explains the proposed system.
Finally, section V illustrates the main results of this work discusses them, and ends with
conclusions of this work.
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1. Related work:

Different approaches have been followed to analyze rotating machine faults such as
signal processing and machine learning approaches. Vibration-related data of fault diagnosing in
electrical motors has complex spatiotemporal patterns, so deep learning models should have the
ability to detect these patterns [6] [7], [8]. Andrei S. Maliuk and his colleagues suggested a
Gaussian mixture model-based (GMM) using frequency bands for feature extraction followed by
a K-nearest neighbor (KNN) classifier [9]. Recent literature has examined thoroughly using of
deep learning models in fault analysis and detection areas of electrical motors. Many deep
learning algorithms have been used and trained using vibration-related data for electrical motor
fault analysis. However, several models have shown substantial accuracy in fault detection such
as Convolutional Neural Networks (CNNs) [10] and Domain adaptation network based on Long
Short-Term Memory (DA-LSTM) proposed by Kumar and his colleagues [11]. Zhao and his
colleagues developed a diagnosis model named deep branch attention network (DBANet), tested
it on publicly available dataset, and compared results with several existing deep learning models
[12]. A lightweight model has been suggested by Yan and his colleagues for fault detection
based on separable multiscale convolution and broadcast self-attention and tested using publicly
available dataset [13].  However, real-time implementation is still not addressed thoroughly
from the view of inference time and required resources of hardware such as RAM and
microcontroller abilities.

On the other hand, the implementation feasibility of these deep learning models on
limited-resource hardware such as microcontrollers (MCUSs), many studies have explored that by
optimizing the deep learning model to tradeoff between fault detection performance and memory
usage[14] [15]. To overcome the need for a large amount of data to train deep learning models,
Transfer learning techniques have also been employed, as seen in the application of models like
ResNet152 for induction motor fault detection [16]. The outstanding success of using deep
learning algorithms in fault analysis and detection in electrical motors and mechanical systems
offers reliable solutions. These solutions can be implemented trustily on hardware-constrained
resources, thereby supporting predictive maintenance and reducing operational disruptions [17].
Although some researchers have been working on fault detection models and implementing them
in real-time, there is still an area of performance enhancement that needs to be covered with new
research work.

1. Vibration-Based Fault Detection Techniques:

Generated vibration from rotating parts of electrical rotating machines can supply
information about the health status of these machines including but not limited to bearing faults
and unbalanced faults [18]. Frequency domain analysis is an essential tool in vibration-related
fault analysis solutions which normally collect data as time-series signals using inertial sensors
such as accelerometer and gyroscope or vibration sensors [19]. Different types of vibration-based
techniques have been used in fault detection frameworks such as Fourier transform, power
spectral density wavelet, spectrogram, and others [20], [21]. The spectrogram technique gained a
good reputation for fault detection of electrical motors especially when it relates to ball bearing
faults and this reputation comes from accurate results of detection when using spectrogram as a
feature extractor for machine learning algorithms [22].
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A. Spectrogram

The spectrogram is a visual representation of a time-series signal such as an audio or
accelerometer signal based on time-frequency analysis. It depends primarily on Short-Time
Fourier Transform (STFT) and computing the magnitude of STFT as explained in the following
equations [23]:

STFT(t,f) = [ x(Dw(z — t)e 2 7dr (1)
Where:
x(7): is the time domain input signal (such as the accelerometer signal)
w(t — t): is the window function which isolates time segments and is centered around t
f: is the required frequency to be calculated from the time segment.

After the calculation of STFT, the spectrogram can be derived from the power spectral
density (PSD) of STFT or the squared magnitude as follows:

Spectrogram(t, ) = |STFT(t, f)|? (2)
The spectrogram is calculated using the following steps:

The input signal x(t) is divided into overlapping segments using the window function w(t)
Applying Fourier transform for each segment using STFT.

Calculate the power spectral density of each time-frequency paired segment.

Visualization of the result PSD over a two-dimensional plot which represents time over the
X-axis and frequency over the Y-axis and the power is represented by intensity or color.

Mo

The spectrogram representation is affected widely by window size and overlap time and
these factors should be selected carefully based on signal behavior and signal complexity.
Moreover, a tradeoff between time resolution which is improved by a shorter window, and
frequency resolution which is improved by a wider window.

B. Deep learning classifier and Tiny Machine Learning

Deep learning (DL) offers significant progress in fault detection and diagnosis in
electrical machines compared with traditional methods. The algorithms of deep learning such as
convolutional neural network (CNN) and recurrent neural network (RNN) have been used widely
in fault detection and classify types of faults efficiently based on vibration signals such as signals
generated from accelerometers [10]. DL classifiers are data-driven models so they perform
accurately if the training data is collected properly and represent all types of faults. However,
many performance metrics have been used to test the ability and performance of the classifier
and some of the main metrics are detailed as follows [24]:

Accuracy is mainly used to evaluate classifier performance, especially with balanced data
and it can be calculated as in equation 3:
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— TP¥TN % 100% ©)
Tp+Tn+Fp +FN

Where Tp: is the positive instants that are classified correctly

Accuracy% =

Tn: is the negative instants that are classified correctly
Fp: is the positive instants that misclassified
Fn: is the negative instants that misclassified

Another metric is precision which is usually used when a false alarm is costly and
calculated as in equation 4:

Precision = —2 (4)
Tp +Fp

While recall metrics focus on negative false rather than positive false and are calculated
as in equation 5
Tp
Tp +Fn

Recall =

()

However, both metrics precision and recall can be gathered in one metric called F1 score
and calculated as in equation 6

PrecisionXRecall
F1 — Score = ZXW (6)

One of the classifier performance metrics is named Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) which measures the ability of the classifier to separate
between fault and non-fault classes with different values of threshold. It is important to mention
that a multi-class classifier weighted metric is used to count the number of instants related to
each class. Recently, electrical machine fault detection and classification have been widely used
in factories and industrial plants, especially with concepts of Industry 4.0. One reason behind this
spread is the ability to implement deep learning algorithms on low-cost and limited resources
hardware such as microcontrollers and single-chip computers. DL algorithm needs high
computational power resources hardware which is not the case when using limited resources
hardware. So, the lite version of the DL algorithm is built to be implemented on limited
resources hardware such as a microcontroller, and this version of DL is called a tiny machine
learning algorithm (TinyML) [25]. Moreover, to reduce the required size and the need for high
computational power, a quantized model is adopted as well as transfer learning approaches. The
quantization stage is fed with floating point variables and weights of the network to produce are
quantized to integer-8 fixed point variables. The gquantization procedure can be described as in
equation 7 [26]:

A Q—min(Q)
Q = round (m X (28 - 1)) (7)
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where @ is the quantized 8-bit integer, and Q is the floating-point variable.

C. Limited resources hardware for TinyML algorithms

Different versions and vendors of low-cost hardware have been developed in the last
years to be a container for the lite version of deep learning algorithm (TinyML) such as
microcontrollers, embedded systems, and Internet of Things devices [27]. Table | depends on
machine learning task and data relation complexity and this reflects selecting the proper
hardware for the specified task. It can be noticed that the microcontroller Arduino Nano 33 BLE
Sense has the minimum resources among other boards which will be used in our work to perform
the classification task of the ternary classifier. Figure 1 shows the development board from
Arduino company which is used in this work to implement a fault detection classifier. This board
has its accelerometer hardware which can capture vibration data and in turn, it can implement a
deep learning classifier. Table I lists several types of hardware boards that are used to
implement the TinyML algorithm, especially classifiers. Hardware resources of each TinyML
algorithm.

Specification of the processor constrains the ability of the board to deal with complex
machine learning tasks such as object detection algorithms and segmentation algorithms since
they require much higher resources than less demand task such as binary classifier. Moreover,
the processing time (inference time) of handling specific tasks in real-time applications depends
mainly on processor computational power. Also, a complex model requires a deeper network
with a large number of layers and this in turn needs a more powerful processor. On the other
hand, deep learning models required RAM size to fit the trained model and the more
sophisticated model reflected in more RAM size and higher data rate.

Table I: example of limited resources hardware for TinyML algorithms

Hardware Processor Memory Features Use Cases
Arduino Nano ARM Cortex-M4 256 KB SRAM, Integrated sensors Gesture recognition,
33 BLE Sense (64 MH2z) 1 MB Flash (IMU, microphone,  audio classification,
environmental environmental
sensors), BLE monitoring
Raspberry Pi ARM Cortex-M0+ 264 KB SRAM, Dual-core, low power Anomaly detection,
Pico (133 MHz) up to 16 MB consumption simple classification
Flash
STM32 ARM Cortex-M Up to 320 KB STM32Cube.Al Predictive
Microcontrollers  series (varied) SRAM, 1 MB support maintenance, motor
Flash control
ESP32 Dual-core Xtensa 520 KB SRAM,  Wi-Fi, Bluetooth loT applications,
LX6 (240 MHz) 4 MB Flash lightweight ML
models
NVIDIA Jetson ~ ARM Cortex-A57 4 GB LPDDR4  128-core Maxwell Vision-based
Nano (1.43 GHz) RAM GPU applications, robotics
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APDS9960
(Proximity, Light,
Colour, Gesture)

HTS221
(Temperature and
Humidity Sensor)

LSM9DS1 - 9-Axis IMU
(Accelerometer, Gyroscope,
Magnetometer)

Nordic nRF 52840
Processor with

NINA B306 Bluetooth
module

Micro-USB
Port

MP34DT05-A
Microphone

LPS22HB (Pressure
Sensor)

Figure 1: Arduino Nano 33 BLE sense (microcontroller)[28]

IV.  Proposed system.

Vibration signals can reflect the health status of motors and especially rotated bearings.
This work is designed and implemented to capture the variation of vibration patterns and classify
the signal into three classes: healthy class, inner race fault, and outer race fault. Figure 2 shows
the five stages of the proposed framework followed in this work.

Deep learning Quantized
model Model testing classifier
(classifier) implementation

Dataset Feature

Selection Generation

Figure 2: proposed framework
A. Dataset

A publicly available dataset is used in this work to test and evaluate the proposed
system[29]. Figure 3 shows the experiment setup and data collection devices used to collect the
dataset. The experiment was conducted to test three statuses of bearing (healthy, inner race face
fault, and outer race face fault) under different speeds and different speed variations using a
motor and electronic drive. An accelerometer with a 200000Hz sampling rate was used in the
experiment to collect vibration data.
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Healthy Bearing Accelerometer
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Encoder

P o yi@ |

) %» AC Drive

Figure 3: Dataset generation experiment [29]

In this work, three subsets of the mentioned dataset which belong to increasing speed for
the three bearing statuses are selected. Each subset includes 16 seconds of data (around 3200000
samples) and the total selected data gathers around 10 million samples for three bearing statuses.
The reason behind selecting part and not the whole dataset is to reduce the machine learning
network so it can fit with limited resources and hardware. Moreover, each 20 ms of data is
grouped in one sample for feature generation which produces a dataset with 3000 samples.
Figure 4 shows three samples of the updated dataset and each sample belongs to one of the three
bearing statuses

a. Healthy
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b. Inner fault

c. outer fault

Figure 4: examples of 20ms-grouped samples

B. Features generation (Spectrogram)

The selection of the proper tool for feature generation is vital for classifier performance
enhancement and this selection should target the type and complexity of the dataset. Time and
frequency are crucial factors in the selected dataset and several tools for feature generation
specialized in accelerometer and time-series data are tested such as wavelet, short-time Fourier
transform, and spectrogram. In this work, the best results of classifier performance come up with
a spectrogram tool with the best combination of its parameters as listed in Table Il. Figure 5
illustrates the generated spectrogram image for the three statuses. Different sets of features are
generated such as statistical, time domain, frequency domain, and texture features from
spectrogram images to produce 825 features in total.

Table Il Spectrogram parameters

Parameter Value
Frame length 8 ms
Frame stride 0.5 ms
FFT length 64
Noise floor -52 dB
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a. Healthy
Figure 5: examples of generated spectrogram
C. Deep learning network

The deep learning classifier follows the feature generation stage and uses 825 time-
frequency features generated which are fed as input to the classifier stage. With the aid of an
online development platform for machine learning algorithm building tool called Edge Impulse,
a dimensional convolutional neural network (LDCNN) ternary classifier is building [30]. The
architecture of the CNN model is illustrated in Figure 6 where features are reshaped to fit
1DCNN then followed by two layers of CNN with a proper number of filters and kernel size.
Extra layers of dropout with a rate of 0.25 are used to speed up the learning process and enhance
performance efficiency by reducing overfitting problems. The deep learning model ends with a
flattened layer and a fully connected dense layer with SoftMax activation function as the final
stage classifier. The deep learning network is trained using the well-known neural network
optimizer ADAM with 100 cycles (Epochs) based on the training set (80% of the selected
dataset) and in turn, the training set is also split into training or validation set (20% of the
training set) [31]. The learning rate is chosen to be 0.005 and the batch size is 32. As known,
CNN is time and resources consuming deep learning algorithm, so to reduce the requirements for
model implementation of microcontroller hardware (Nano33 BLE Sens), the model variables are
quantized using integer 8 variables. The quantized profile helps to make the deep learning model
fit the hardware resources and also reduces latency to acceptable ranges.
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{ Reshape layer (33 columns)
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1D conv/ pool (8 filters, 3 kernal size, 1 layer)

-

Dropout (rate 0.25)

-

1D conv/ pool (16 filters, 3 kernal size, 1 layer)

-

Dropout (rate 0.25)

-

Flatten layer

&

Output layer (3 classes)

Inner Fault Outer Fault
Healthy

Figure 6: Deep learning network architecture

V. Results and discussion

The proposed deep learning model is tested and evaluated using the available dataset of
the accelerometer data and this model has two stages: training phase and testing phase. The
training phase uses 80% of the dataset which is in turn divided into two subsets (80% for training
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and 20% for validation). After 100 Epochs of training, the model is settled with minimum
changes in error, and the validation set is used to calculate the performance metrics including
confusion matrix and accuracy and other metrics as shown in Table I1l and Table IV.

Table 111 Confusion matrix of the training phase

HEALTHY INNER OUTER

HEALTHY

INNER

OUTER

F1 SCORE

Table IV Training set performance metrics

Metric Value
Accuracy 98.1%
Weighted average F1 score 0.98
Loss 0.05
AU-ROC 1.00
Weighted average of Three- classes Precision 0.98
Weighted average of Three- classes Recall 0.98

The trained CNN model is tested using the unseen 20% of the dataset based on the
quantized profile model. All samples of the test set (589 samples) are classified by the three
classes classifier to evaluate and test the model's performance. Table V lists the main
performance metrics and shows a high accuracy of 98.64% and a weighted average F1 score of
0.99. The two evaluation metrics values are very close due to the balance of the number of
samples in each class (around 1/3 of the test dataset in each class). This balance is also reflected
in weighted average Recall and precision with the value of 0.99 for each of them.

Table V Test set performance metrics

Metrics Value
Accuracy 98.64%
Weighted average F1 score 0.99
AU-ROC 1.00
Weighted average of Three- classes Precision 0.99
Weighted average of Three- classes Recall 0.99

The classification results that are depicted in the confusion matrix shown in Table VI,
overview the high performance of the implemented deep learning model. It can be noticed easily
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that the inner fault class is perfectly predicted with a 1.00 F1 score while the other two classes
(healthy and outer fault) have slight errors with an F1 score of 0.99 for both classes.

Table VI Confusion matrix of the test phase

HEALTHY INNER OUTER UNCERTAIN
HEALTHY 0% 0.6% 1.7%
INNER 0% 0% 0%
OUTER 0.5% 1.0% 0.5%
F1 SCORE 0.99 1.00 0.99

The one-dimensional convolutional neural network and feature extraction stage
representing the spectrogram creation technique has been optimized and deployed using limited
resources microcontroller nano 33 BLE sense. After model deployment on the Arduino board
and tested with the test dataset, it consumes the following resources as shown in Table VII

Table VII fault detection model hardware consumption quantized (integer 8)

Resources Spectrogram Classifier Total
Latency 16ms 4ms 20ms
RAM 8.3KB 4.4KB 8.3KB
FLASH RAM - 32.0KB 32.0KB
ACCURACY 98.64%

Notably, the fault detector didn’t consume a large part of hardware resources (less than 5% of
board resources) and this reflects the success of the implemented detector with the proposed
setting of the tiny machine learning model (1DCNN). Moreover, the optimization process helps
using of RAM efficiently by relocating resources between the detector components as shown in
Table V. Hence, the classifier used the same resources of RAM after the Spectrogram finished its
role. This relocation appears in total usage of RAM where it’s not the sum of individual
resources for each stage.

Deep learning algorithms have been used recently for electrical motor fault detection
based on vibration-relate data, yet detection performance still needs more work to enhance it.
Moreover, real-time implementation is still not addressed thoroughly from the view of inference
time and required resources of hardware such as RAM and microcontroller abilities. Table VIII
shows a comparison of proposed work with related work especially research papers using the
same dataset.
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The proposed model outperforms the existing fault detection models that using vibration-
related datasets. The results listed in Table VIII show that the proposed model gains higher
classification performance metrics (accuracy of 98.64 and F1 scores of 0.99). Moreover, the
proposed model can be implemented practically in real time using limited resources hardware
(microcontroller)

Table VIII a comparison of the proposed model with the most recent existing models

Method Precision Recall Fl-score  Accuracy %  Hardware
Implementation

GMM [9] 0.96 0.96 0.96 95.93 No

DA_LSTM [11] - - 0.78 75.33 No

DBANet [12] - - - 97.28 No
LiConvFormer - - - 97.31 No

[13]

ResNet18 [13] - - - 97.56 No

TinyMLDLN [14] - - - 95.6 yes

Proposed 0.99 0.99 0.99 98.64 Yes

V1. Conclusions

Early signs of electrical faults can be captured and detected by collecting vibration data
and analyzed with one of the deep learning algorithms. It is known that deep learning algorithms
require very powerful hardware with high computational power because these algorithms are
very demandable for computation and hardware resources. However, lite versions of deep
learning algorithms have been developed recently to reduce the model requirement for resources
by using quantization techniques and developing less sophisticated models with fewer layers. In
this work, a one-dimensional convolutional neural network is adopted and a quantized model is
implemented to train the publicly available accelerometer dataset. The dataset is generated from
text experiments to simulate three types of bearing status (healthy, inner race fault, and outer
race fault). The fault classifier has been implemented successfully and deployed on Arduino 33
BLE sense microcontroller using around 5% of hardware available resources with a RAM size of
14.0 kb and Flash RAM size of 38 kb. The implemented classifier works accurately with an
accuracy of 98.64% and a latency of 4ms.
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