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Abstract 

The dramatic evolution of limited-resource hardware such as microcontrollers in 

conjunction with the development of machine learning algorithms has helped open doors to 

building smart devices in industrial sectors. Predictive maintenance is one of these sectors that 

uses smart devices efficiently. Vibration data such as data collected from accelerometers can 

capture precisely any change in moving machine behavior due to mechanical wearing in moving 

parts such as bearings.  In this work, a deep learning one-dimensional convolutional neural 

network (1DCNN) classifier is built as a fault detector and tuned to enhance detection 

performance.  This classifier is tested using a publicly available vibration dataset for three types 

of rotating bearing status (healthy, inner race fault, and outer race fault). The classifier is 

designed using a tiny machine-learning framework, which can be implemented using a 

microcontroller with limited resources. The accelerometer data is preprocessed using a 

spectrogram of a vibration signal to extract frequency-time-related features to enhance classifier 

performance. Moreover, the classifier is quantized using an eight-bit integer to reduce calculation 

time and required memory. TinyML framework environment handles the building of the ternary 

classifier and helps to implement this classifier on limited resources hardware. This ternary 

classifier achieves accurate results with an accuracy of 98.64% and F1 score of 0.99. However, 

these accurate results were achieved using minimal resources of an Arduino microcontroller with 

a RAM of 8.3kb and a latency of 20ms.  

Keywords: TinyML; Vibration; Limited resources hardware; CNN.  

I. Introduction: 

Industry 4.0 leverages many important aspects such as predictive maintenance, fault 

detection, and anomaly detection based on advanced technologies such as machine learning 

(ML), Internet of Things (IoT), and big data analytics. These new technologies facilitate the way 

for continuous monitoring and analysis of equipment conditions, enabling the early detection of 

potential failures before they occur improving the chances for workflow, and reducing downtime 

of industry processes. Machine learning algorithms, including deep learning, ensemble methods, 
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and anomaly detection, have been shown to effectively predict maintenance requirements by 

analyzing sensor and operational data, although challenges such as data quality and model 

generalization remain [1] [2].  

Electric motors are an essential part of each factory and industry sector and this raises the 

need to guarantee the continuous operation of these parts by using smart and low-cost fault 

detection techniques. Deep learning algorithms such as Recurrent Neural Networks (RNNs) and 

Convolutional Neural Networks (CNNs) have gained a reputation for being used in prediction 

maintenance and fault detection solutions, especially when these solutions must be implemented 

with limited resources and hardware. Machine learning algorithms are known to be data-driven 

models and their performance is significantly affected by data size and type including data 

collection tool and noise behind that. So, it is very important to choose training raw data 

carefully including spatiotemporal patterns generated from faults in electrical motors. Recently, 

many researchers have developed and optimized deep learning algorithms that can fit 

microcontroller unit (MCU) resources to cover the large need for fault detection devices. The 

researchers are trying hard to balance between MCU and RAM constraints from one side and 

detector performance from the other side [3]. Overall, deep learning contributes to fault analysis 

and detection across different electrical motors and mechanical systems overcoming traditional 

techniques that use manual analysis and rely on experts’ knowledge [4]. However, while deep 

learning achieves remarkable progress in the fault detection field, especially with deployments 

on limited resources hardware, there are still serious challenges that need to be addressed and 

solved to be widely and confidently used in the industry. One of these challenges is the need for 

large amounts of data to train deep learning algorithms such as CNNs to achieve the required 

accuracy. Usually, it is not very affordable to build large datasets that can cover all types of 

faults including all types of electrical motors which leads to unreliable fault detection outcomes. 

This untrusted model may raise serious concerns about relying on deep learning approaches in 

fault detection models which is critical in safety-sensitive applications. Additionally, deploying a 

deep learning model on resource-constrained hardware like MCUs may not always offer the 

required performance, so a tradeoff between performance and resource consumption always 

needs to be handled carefully [5].  

In this work, a lite deep learning algorithm is tuned and optimized using a publicly 

available dataset for ball-bearing fault detection. The model is successfully quantized using an 

integer 8 quantizer and tuned to reduce its size and computational power needed to fit the low-

cost and resources-constrained microcontroller. The proposed model was successfully deployed 

on the Arduino 33BLE Arduino board and gained an accurate detection rate. Additionally, the 

time-frequency feature generation stage is used to enhance the classification performance of the 

three-classes model. The proposed framework optimizes hardware resources and three-classes 

model performance. The remainder of the research paper is as follows: section II overviews 

related work, section III explains in detail aspects and background theory behind vibration-

related fault detection framework, then Section IV overviews and explains the proposed system. 

Finally, section V illustrates the main results of this work discusses them, and ends with 

conclusions of this work.  
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II. Related work:  

Different approaches have been followed to analyze rotating machine faults such as 

signal processing and machine learning approaches. Vibration-related data of fault diagnosing in 

electrical motors has complex spatiotemporal patterns, so deep learning models should have the 

ability to detect these patterns [6] [7], [8].  Andrei S. Maliuk and his colleagues suggested a 

Gaussian mixture model-based (GMM) using frequency bands for feature extraction followed by 

a K-nearest neighbor (KNN) classifier [9]. Recent literature has examined thoroughly using of 

deep learning models in fault analysis and detection areas of electrical motors. Many deep 

learning algorithms have been used and trained using vibration-related data for electrical motor 

fault analysis. However, several models have shown substantial accuracy in fault detection such 

as Convolutional Neural Networks (CNNs) [10] and Domain adaptation network based on Long 

Short-Term Memory (DA-LSTM) proposed by Kumar and his colleagues [11]. Zhao and his 

colleagues developed a diagnosis model named deep branch attention network (DBANet), tested 

it on publicly available dataset, and compared results with several existing deep learning models 

[12]. A lightweight model has been suggested by Yan and his colleagues for fault detection 

based on separable multiscale convolution and broadcast self-attention and tested using publicly 

available dataset [13].    However, real-time implementation is still not addressed thoroughly 

from the view of inference time and required resources of hardware such as RAM and 

microcontroller abilities.  

On the other hand, the implementation feasibility of these deep learning models on 

limited-resource hardware such as microcontrollers (MCUs), many studies have explored that by 

optimizing the deep learning model to tradeoff between fault detection performance and memory 

usage[14] [15]. To overcome the need for a large amount of data to train deep learning models, 

Transfer learning techniques have also been employed, as seen in the application of models like 

ResNet152 for induction motor fault detection [16]. The outstanding success of using deep 

learning algorithms in fault analysis and detection in electrical motors and mechanical systems 

offers reliable solutions. These solutions can be implemented trustily on hardware-constrained 

resources, thereby supporting predictive maintenance and reducing operational disruptions [17]. 

Although some researchers have been working on fault detection models and implementing them 

in real-time, there is still an area of performance enhancement that needs to be covered with new 

research work.  

III. Vibration-Based Fault Detection Techniques: 

Generated vibration from rotating parts of electrical rotating machines can supply 

information about the health status of these machines including but not limited to bearing faults 

and unbalanced faults [18]. Frequency domain analysis is an essential tool in vibration-related 

fault analysis solutions which normally collect data as time-series signals using inertial sensors 

such as accelerometer and gyroscope or vibration sensors [19]. Different types of vibration-based 

techniques have been used in fault detection frameworks such as Fourier transform, power 

spectral density wavelet, spectrogram, and others [20], [21]. The spectrogram technique gained a 

good reputation for fault detection of electrical motors especially when it relates to ball bearing 

faults and this reputation comes from accurate results of detection when using spectrogram as a 

feature extractor for machine learning algorithms [22].  
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A. Spectrogram 

The spectrogram is a visual representation of a time-series signal such as an audio or 

accelerometer signal based on time-frequency analysis. It depends primarily on Short-Time 

Fourier Transform (STFT) and computing the magnitude of STFT as explained in the following 

equations [23]: 

    (   )  ∫  ( ) (   )         
 

 
  (1) 

Where: 

 ( )  is the time domain input signal (such as the accelerometer signal) 

 (   ): is the window function which isolates time segments and is centered around t 

f: is the required frequency to be calculated from the time segment. 

After the calculation of STFT, the spectrogram can be derived from the power spectral 

density (PSD) of STFT or the squared magnitude as follows: 

           (   )  |    (   )|   (2) 

The spectrogram is calculated using the following steps: 

1. The input signal  ( ) is divided into overlapping segments using the window function  ( )   
2. Applying Fourier transform for each segment using STFT. 

3. Calculate the power spectral density of each time-frequency paired segment.  

4. Visualization of the result PSD over a two-dimensional plot which represents time over the 

X-axis and frequency over the Y-axis and the power is represented by intensity or color. 

 The spectrogram representation is affected widely by window size and overlap time and 

these factors should be selected carefully based on signal behavior and signal complexity. 

Moreover, a tradeoff between time resolution which is improved by a shorter window, and 

frequency resolution which is improved by a wider window.  

B. Deep learning classifier and Tiny Machine Learning 

Deep learning (DL) offers significant progress in fault detection and diagnosis in 

electrical machines compared with traditional methods. The algorithms of deep learning such as 

convolutional neural network (CNN) and recurrent neural network (RNN) have been used widely 

in fault detection and classify types of faults efficiently based on vibration signals such as signals 

generated from accelerometers [10]. DL classifiers are data-driven models so they perform 

accurately if the training data is collected properly and represent all types of faults. However, 

many performance metrics have been used to test the ability and performance of the classifier 

and some of the main metrics are detailed as follows [24]: 

Accuracy is mainly used to evaluate classifier performance, especially with balanced data 

and it can be calculated as in equation 3: 
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         (3) 

Where  TP: is the positive instants that are classified correctly  

TN: is the negative instants that are classified correctly 

FP: is the positive instants that misclassified  

FN: is the negative instants that misclassified  

Another metric is precision which is usually used when a false alarm is costly and 

calculated as in equation 4: 

           
   

       
       (4) 

While recall metrics focus on negative false rather than positive false and are calculated 

as in equation 5 

        
   

       
       (5) 

However, both metrics precision and recall can be gathered in one metric called F1 score 

and calculated as in equation 6 

            
                

                
     (6) 

One of the classifier performance metrics is named Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) which measures the ability of the classifier to separate 

between fault and non-fault classes with different values of threshold. It is important to mention 

that a multi-class classifier weighted metric is used to count the number of instants related to 

each class. Recently, electrical machine fault detection and classification have been widely used 

in factories and industrial plants, especially with concepts of Industry 4.0. One reason behind this 

spread is the ability to implement deep learning algorithms on low-cost and limited resources 

hardware such as microcontrollers and single-chip computers. DL algorithm needs high 

computational power resources hardware which is not the case when using limited resources 

hardware. So, the lite version of the DL algorithm is built to be implemented on limited 

resources hardware such as a microcontroller, and this version of  DL is called a tiny machine 

learning algorithm (TinyML) [25]. Moreover, to reduce the required size and the need for high 

computational power, a quantized model is adopted as well as transfer learning approaches. The 

quantization stage is fed with floating point variables and weights of the network to produce are 

quantized to integer-8 fixed point variables.  The quantization procedure can be described as in 

equation 7 [26]: 

 ̂       (
     ( )

   ( )    ( )
 (    ))    (7) 
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where  ̂ is the quantized 8-bit integer, and   is the floating-point variable.  

C.  Limited resources hardware for TinyML algorithms 

Different versions and vendors of low-cost hardware have been developed in the last 

years to be a container for the lite version of deep learning algorithm (TinyML) such as 

microcontrollers, embedded systems, and Internet of Things devices [27]. Table I depends on 

machine learning task and data relation complexity and this reflects selecting the proper 

hardware for the specified task. It can be noticed that the microcontroller Arduino Nano 33 BLE 

Sense has the minimum resources among other boards which will be used in our work to perform 

the classification task of the ternary classifier. Figure 1 shows the development board from 

Arduino company which is used in this work to implement a fault detection classifier. This board 

has its accelerometer hardware which can capture vibration data and in turn, it can implement a 

deep learning classifier.  Table I lists several types of hardware boards that are used to 

implement the TinyML algorithm, especially classifiers. Hardware resources of each TinyML 

algorithm. 

Specification of the processor constrains the ability of the board to deal with complex 

machine learning tasks such as object detection algorithms and segmentation algorithms since 

they require much higher resources than less demand task such as binary classifier. Moreover, 

the processing time (inference time) of handling specific tasks in real-time applications depends 

mainly on processor computational power. Also, a complex model requires a deeper network 

with a large number of layers and this in turn needs a more powerful processor. On the other 

hand, deep learning models required RAM size to fit the trained model and the more 

sophisticated model reflected in more RAM size and higher data rate.  

Table I: example of limited resources hardware for TinyML algorithms 

Hardware Processor Memory Features Use Cases 

Arduino Nano 

33 BLE Sense 

ARM Cortex-M4 

(64 MHz) 

256 KB SRAM, 

1 MB Flash 

Integrated sensors 

(IMU, microphone, 

environmental 

sensors), BLE 

Gesture recognition, 

audio classification, 

environmental 

monitoring 

Raspberry Pi 

Pico 

ARM Cortex-M0+ 

(133 MHz) 

264 KB SRAM, 

up to 16 MB 

Flash 

Dual-core, low power 

consumption 

Anomaly detection, 

simple classification 

STM32 

Microcontrollers 

ARM Cortex-M 

series (varied) 

Up to 320 KB 

SRAM, 1 MB 

Flash 

STM32Cube.AI 

support 

Predictive 

maintenance, motor 

control 

ESP32 Dual-core Xtensa 

LX6 (240 MHz) 

520 KB SRAM, 

4 MB Flash 

Wi-Fi, Bluetooth IoT applications, 

lightweight ML 

models 

NVIDIA Jetson 

Nano 

ARM Cortex-A57 

(1.43 GHz) 

4 GB LPDDR4 

RAM 

128-core Maxwell 

GPU 

Vision-based 

applications, robotics 
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Figure 1: Arduino Nano 33 BLE sense  (microcontroller)[28] 

IV. Proposed system. 

Vibration signals can reflect the health status of motors and especially rotated bearings. 

This work is designed and implemented to capture the variation of vibration patterns and classify 

the signal into three classes: healthy class, inner race fault, and outer race fault. Figure 2 shows 

the five stages of the proposed framework followed in this work.  

 

Figure 2: proposed framework 

A. Dataset  

A publicly available dataset is used in this work to test and evaluate the proposed 

system[29]. Figure 3 shows the experiment setup and data collection devices used to collect the 

dataset. The experiment was conducted to test three statuses of bearing (healthy, inner race face 

fault, and outer race face fault) under different speeds and different speed variations using a 

motor and electronic drive. An accelerometer with a 200000Hz sampling rate was used in the 

experiment to collect vibration data.  

 

Dataset 
Selection 

Feature 
Generation 

Deep learning 
model  

(classifier) 
Model testing 

Quantized 
classifier 

implementation 
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Figure 3: Dataset generation experiment [29]  

In this work, three subsets of the mentioned dataset which belong to increasing speed for 

the three bearing statuses are selected. Each subset includes 16 seconds of data (around 3200000 

samples) and the total selected data gathers around 10 million samples for three bearing statuses. 

The reason behind selecting part and not the whole dataset is to reduce the machine learning 

network so it can fit with limited resources and hardware. Moreover, each 20 ms of data is 

grouped in one sample for feature generation which produces a dataset with 3000 samples. 

Figure 4 shows three samples of the updated dataset and each sample belongs to one of the three 

bearing statuses 

 

a. Healthy 
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b. Inner fault 

 

c. outer fault 

Figure 4: examples of 20ms-grouped samples 

B. Features generation (Spectrogram) 

The selection of the proper tool for feature generation is vital for classifier performance 

enhancement and this selection should target the type and complexity of the dataset. Time and 

frequency are crucial factors in the selected dataset and several tools for feature generation 

specialized in accelerometer and time-series data are tested such as wavelet, short-time Fourier 

transform, and spectrogram. In this work, the best results of classifier performance come up with 

a spectrogram tool with the best combination of its parameters as listed in Table II. Figure 5 

illustrates the generated spectrogram image for the three statuses.  Different sets of features are 

generated such as statistical, time domain, frequency domain, and texture features from 

spectrogram images to produce  825 features in total.  

Table II Spectrogram parameters 

Parameter Value 

Frame length 8 ms 

Frame stride 0.5 ms 

FFT length  64 

Noise floor  -52 dB 
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a. Healthy b. Inner fault c. outer fault 

Figure 5: examples of generated spectrogram 

C. Deep learning network 

 The deep learning classifier follows the feature generation stage and uses 825 time-

frequency features generated which are fed as input to the classifier stage. With the aid of an 

online development platform for machine learning algorithm building tool called Edge Impulse, 

a dimensional convolutional neural network (1DCNN) ternary classifier is building [30]. The 

architecture of the CNN model is illustrated in Figure 6 where features are reshaped to fit 

1DCNN then followed by two layers of CNN with a proper number of filters and kernel size. 

Extra layers of dropout with a rate of 0.25 are used to speed up the learning process and enhance 

performance efficiency by reducing overfitting problems. The deep learning model ends with a 

flattened layer and a fully connected dense layer with SoftMax activation function as the final 

stage classifier. The deep learning network is trained using the well-known neural network 

optimizer ADAM with 100 cycles (Epochs) based on the training set (80% of the selected 

dataset) and in turn, the training set is also split into training or validation set (20% of the 

training set) [31]. The learning rate is chosen to be 0.005 and the batch size is 32.  As known, 

CNN is time and resources consuming deep learning algorithm, so to reduce the requirements for 

model implementation of microcontroller hardware (Nano33 BLE Sens), the model variables are 

quantized using integer 8 variables. The quantized profile helps to make the deep learning model 

fit the hardware resources and also reduces latency to acceptable ranges.  
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Figure 6: Deep learning network architecture 

V. Results and discussion  

The proposed deep learning model is tested and evaluated using the available dataset of 

the accelerometer data and this model has two stages: training phase and testing phase. The 

training phase uses 80% of the dataset which is in turn divided into two subsets (80% for training 

Input layer (825 features) 

Reshape layer (33 columns) 

1D conv/ pool (8 filters, 3 kernal size, 1 layer) 

Dropout (rate 0.25) 

1D conv/ pool (16 filters, 3 kernal size, 1 layer) 

Dropout (rate 0.25) 

Flatten layer 

Output layer (3 classes) 

Outer Fault Inner Fault 

Healthy 
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and 20% for validation). After 100 Epochs of training, the model is settled with minimum 

changes in error, and the validation set is used to calculate the performance metrics including 

confusion matrix and accuracy and other metrics as shown in Table III and Table IV. 

Table III Confusion matrix of the training phase 

 HEALTHY INNER OUTER 

HEALTHY 98.2% 0% 1.8% 

INNER 0% 99.4% 0.6% 

OUTER 3.4% 0% 96.6% 

F1 SCORE 0.98 1.00 0.97 

Table IV Training set performance metrics 

Metric Value 

Accuracy  98.1% 

Weighted average F1 score  0.98 

Loss 0.05 

AU-ROC 1.00 

Weighted average of Three- classes Precision   0.98 

Weighted average of Three- classes Recall   0.98 

The trained CNN model is tested using the unseen 20% of the dataset based on the 

quantized profile model. All samples of the test set (589 samples) are classified by the three 

classes classifier to evaluate and test the model's performance. Table V lists the main 

performance metrics and shows a high accuracy of 98.64% and a weighted average F1 score of 

0.99. The two evaluation metrics values are very close due to the balance of the number of 

samples in each class (around 1/3 of the test dataset in each class). This balance is also reflected 

in weighted average Recall and precision with the value of 0.99 for each of them. 

Table V Test set performance metrics 

Metrics Value 

Accuracy  98.64% 

Weighted average F1 score  0.99 

AU-ROC 1.00 
Weighted average of Three- classes Precision   0.99 
Weighted average of Three- classes Recall   0.99 

The classification results that are depicted in the confusion matrix shown in Table VI, 

overview the high performance of the implemented deep learning model. It can be noticed easily 
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that the inner fault class is perfectly predicted with a 1.00 F1 score while the other two classes 

(healthy and outer fault) have slight errors with an F1 score of 0.99 for both classes.  

Table VI Confusion matrix of the test phase 

 HEALTHY INNER OUTER UNCERTAIN 

HEALTHY 97.7% 0% 0.6% 1.7% 

INNER 0% 100% 0% 0% 

OUTER 0.5% 1.0% 98.1% 0.5% 

F1 SCORE 0.99 1.00 0.99  

 

The one-dimensional convolutional neural network and feature extraction stage 

representing the spectrogram creation technique has been optimized and deployed using limited 

resources microcontroller nano 33 BLE sense. After model deployment on the Arduino board 

and tested with the test dataset, it consumes the following resources as shown in Table VII 

Table VII fault detection model hardware consumption quantized (integer 8)  

Resources Spectrogram  Classifier  Total  

Latency  16ms 4ms 20ms 

RAM  8.3KB 4.4KB 8.3KB 

FLASH RAM   - 32.0KB 32.0KB 

ACCURACY     98.64% 

Notably, the fault detector didn’t consume a large part of hardware resources (less than 5% of 

board resources) and this reflects the success of the implemented detector with the proposed 

setting of the tiny machine learning model (1DCNN). Moreover, the optimization process helps 

using of RAM efficiently by relocating resources between the detector components as shown in 

Table V. Hence, the classifier used the same resources of RAM after the Spectrogram finished its 

role. This relocation appears in total usage of RAM where it’s not the sum of individual 

resources for each stage.  

Deep learning algorithms have been used recently for electrical motor fault detection 

based on vibration-relate data, yet detection performance still needs more work to enhance it. 

Moreover, real-time implementation is still not addressed thoroughly from the view of inference 

time and required resources of hardware such as RAM and microcontroller abilities. Table VIII 

shows a comparison of proposed work with related work especially research papers using the 

same dataset.  
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The proposed model outperforms the existing fault detection models that using vibration-

related datasets. The results listed in Table VIII show that the proposed model gains higher 

classification performance metrics (accuracy of 98.64 and F1 scores of 0.99). Moreover, the 

proposed model can be implemented practically in real time using limited resources hardware 

(microcontroller)  

   Table VIII a comparison of the proposed model with the most recent existing models  

Method  Precision   Recall  F1-score Accuracy % Hardware 
Implementation 

GMM [9]  0.96 0.96 0.96 95.93 No 

DA_LSTM  [11] - - 0.78 75.33 No 

DBANet [12] - - - 97.28 No 

LiConvFormer 
[13] 

- - - 97.31 No 

ResNet18 [13] - - - 97.56 No 

TinyML DLN [14] - - - 95.6 yes 

Proposed   0.99 0.99 0.99 98.64 Yes 

VI. Conclusions  

Early signs of electrical faults can be captured and detected by collecting vibration data 

and analyzed with one of the deep learning algorithms. It is known that deep learning algorithms 

require very powerful hardware with high computational power because these algorithms are 

very demandable for computation and hardware resources. However, lite versions of deep 

learning algorithms have been developed recently to reduce the model requirement for resources 

by using quantization techniques and developing less sophisticated models with fewer layers. In 

this work, a one-dimensional convolutional neural network is adopted and a quantized model is 

implemented to train the publicly available accelerometer dataset. The dataset is generated from 

text experiments to simulate three types of bearing status (healthy, inner race fault, and outer 

race fault). The fault classifier has been implemented successfully and deployed on Arduino 33 

BLE sense microcontroller using around 5% of hardware available resources with a RAM size of 

14.0 kb and Flash RAM size of 38 kb.  The implemented classifier works accurately with an 

accuracy of 98.64% and a latency of 4ms. 
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كتذاف الأخطاء المتعمقة بالاهتزاز تنفيذ كفهء لمرنف  بخهارزمية  التعميم العميق المرغر المعتمد عمى ا
 باستخدام أجهزة ذات مهارد محدودة

 هلال عبد الحدين عبهد الميباوي 

 العراق  ،بابل ،جامعة بابل ،كمية اليندسة ،قدم اليندسة الكيربائية
 Eng.hilal_al-libawy@uobabylon.edu.iq البريد الالكتروني :

 الخلاصة 

ساعد التطهر الكبير للأجيزة ذات المهارد المحدودة مثل المتحكمات الدقيقة بالتزامن مع تطهير خهارزميات التعمم  لقد
الآلي في فتح الأبهاب لبناء أجيزة ذكية في القطاعات الرناعية. الريانة التنبؤية ىي أحد ىذه القطاعات التي تدتخدم 

زاز مثل البيانات التي تم جمعيا من مقاييس التدارع أن تمتقط بدقة أي تغيير في الأجيزة الذكية بكفاءة. يمكن لبيانات الاىت
سمهك الآلة المتحركة بدبب التآكل الميكانيكي في الأجزاء المتحركة مثل المحامل. في ىذا العمل، تم بناء مرنف شبكة 

ن أداء الكذف. يتم اختبار ىذا ( ككاشف للأخطاء وضبطو لتحدي1DCNNعربية ممتهية أحادية البعد لمتعمم العميق )
المرنف باستخدام مجمهعة بيانات اىتزاز متاحة لمجميهر لثلاثة أنهاع من حالة المحمل الدوار )سميم، خطأ الاطار الداخمي، 
وخطأ الاطار الخارجي(. تم ترميم المرنف باستخدام إطار عمل صغير لمتعمم الآلي، والذي يمكن تنفيذه باستخدام متحكم 

مهارد محدودة. تتم معالجة بيانات مقياس التدارع مدبقًا باستخدام مخطط طيف لإشارة اىتزاز لاستخراج ميزات مرتبطة دقيق ب
بالتردد والهقت لتحدين أداء المرنف. علاوة عمى ذلك، يتم تحديد كمية المرنف باستخدام عدد صحيح مكهن من ثماني بتات 

بناء المرنف الثلاثي وتداعد في تنفيذ ىذا المرنف  TinyMLلى بيئة إطار عمل لتقميل وقت الحداب والذاكرة المطمهبة. تته 
. ومع ذلك، تم F1 0.99٪ ودرجة 46.89عمى أجيزة ذات مهارد محدودة. يحقق ىذا المرنف الثلاثي نتائج دقيقة بدقة 

كيمه  6.8كرة وصهل عذهائي تبمغ مع ذا Arduinoتحقيق ىذه النتائج الدقيقة باستخدام الحد الأدنى من المهارد لهحدة تحكم 
 مممي ثانية. 02بايت وزمن انتقال 

 . CNN؛ الاىتزاز؛ أجيزة ذات مهارد محدودة؛ TinyMLة : الدالالكممات 
 

 


