

ISSN: 2616 - 9916

## A Review: Technologies for CO<sub>2</sub> Capture in Hydrogen Production from Natural Gas Steam Reforming with Membrane Systems

Alaa H . Theban<sup>a,\*</sup>

Tahseen A. Al-Hattab<sup>b</sup>

<sup>a, b</sup> Department of Chemical Engineering, College of Engineering, University of Babylon, Babylon, IRAQ

| alaa.theban.engh428@student.uobabylon.edu.i | iq <sup>a,*</sup> alhattab.t@uobabylon.edu.iq <sup>b</sup> |  |
|---------------------------------------------|------------------------------------------------------------|--|
|                                             |                                                            |  |

| <b>Received:</b> | 25/12/2024 | Accepted: | 24/3/2025   | Published: | 30/4/2025 |
|------------------|------------|-----------|-------------|------------|-----------|
| Abstract         | 1910       | 1 DATE    | THE TRUE TO | 11 -       |           |

Hydrogen is produced by several sources, particularly natural gas. Hydrogen production from methane steam reforming via a membrane reactor with  $CO_2$  capture is a unique method for simultaneously producing and purifying hydrogen and obtaining clean fuel. Methane steam reforming occupies 50% of hydrogen production in the world.  $CO_2$  capture can be divided into three fundamental types: post-, pre-, and oxy-combustion capture. However, carbon capture technologies include adsorption, absorption, membranes, cryogenic/low-temperature separation, or chemical looping combustion. MATLAB, COMSOL, Aspen Plus, and ANSYS These programs solve the governing equations for a sorbent-enhanced membrane reactor. These equations are continuity, mass, and heat transfer. We reviewed the technologies for  $CO_2$  capture related to hydrogen production, containing the types of hydrocarbon input, methods for production, catalyst types,  $CO_2$  capture materials, and operation conditions. Also, we summarized the technologies for  $CO_2$  capture studies in hydrogen production from natural gas steam reforming with membrane systems.

**Keywords:** Hydrogen Production, CO<sub>2</sub> Capture, Membrane Reactor, Natural Gas Steam Reforming, Adsorption.

#### Introduction

The growing worldwide concerns about energy, intensified greenhouse gas emissions, constrained storage of fossil fuels, and aggravated global climate change have forced intensive developments searching for environmentally clean, sustainable, and renewable energy supply and efficient hydrogen production [1]. The primary cause of Earth's global warming is increased CO2 caused by human activity. When compared to the mid-19th century, the concentration of CO2 increased by around 38% to 403 ppm in May of 2015[2]. However, as Figure 1 indicated, based on a 2021 study by the International Energy Agency (IEA), the transportation sector generates around 25% of global CO2 emissions, while power coal is responsible for about 28% [3]. Among the various methods that could be used to reduce emissions, the most efficient and economical ways of satisfying environmental regulations are to lower the utilization of fossil fuels through enhancing process efficiency and changing to less carbon-intensive fuels (e.g., natural gas) and/or free-carbon energy sources (e.g., biomass) [4]. One approach to reducing CO2 emissions is through the use of carbon capture, utilization, and storage (CCUS) methods and technologies. By using underground storage facilities or converting them into valuable products, CCUS technologies seek to capture CO2 from major industrial sources [5]. There are several technologies available for carbon capture, including chemical adsorption, membranes, and solid sorbents. The most popular technique for post-combustion CO2 capture is chemical solvent-based adsorption because of its high CO2 removal efficiency, particularly at low partial pressure of CO<sub>2</sub> [6]. The precombustion capture method that works best is the application of solid sorbents. The majority of published papers in the open literature focus on solid sorbents at high temperatures, such as lithium



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلة جامعة بالل للعلوم الهندسية

#### Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

zirconate(Li<sub>2</sub>ZrO<sub>3</sub>) [7],[8], sodium zirconate (Na<sub>2</sub>ZrO<sub>3</sub>) [9], [10], lithium silicate (Li<sub>4</sub>siO<sub>4</sub>) [11],[12] and CaO-based sorbents [13], [14]. Up to nearly 100% efficiency, the CO2 capture efficiency rises as pressure rises. The key to the membrane working effectively at greater pressures is to increase its effective permeability area [15]. This study aims to develop an understanding of techniques for capturing CO2 produced through the hydrogen production process, which can be utilized as clean energy for various applications.



### **Hydrogen Production Methods**

Hydrogen can be produced in a wide range of non-renewable and renewable ways, with corresponding variations in costs and carbon dioxide emissions. Though it is almost entirely dependent on the reforming and gasification of fossil hydrocarbon sources, such as coal (23%), natural gas (76%), and other sources, which generate 830 million tons of CO2 a year, the method of generating hydrogen today is by no means renewable. The substantial amount of emissions that hydrogen derived from fossil fuels releases is not good for the climate or the environment. Thus, the transition to low-carbon hydrogen production is essential [16]. Figure 2 explains the several methods for producing hydrogen.





## JOURNAL'S UNIVERSITY OF BABYLON FOR **ENGINEERING SCIENCES (JUBES)**

مسجلة جسامعة بمسابل للعلموم الهندسية





Figure 2: Hydrogen production ways [17].

#### Hydrogen Production Methods from Natural Gas

#### 1. Steam methane reforming

Steam methane reforming (SMR) is a well-known and commonly used method for producing hydrogen; this process provides more than 80% of the hydrogen that is obtained by SMR [18], in which methane and steam interact to produce hydrogen-rich syngas [19]. In this process, high-temperature steam (700–1000 °C) is utilized to produce  $H_2$  from natural gas, such as methane. In the presence of a catalyst, methane and steam react at a pressure of 3-25 bar to produce  $H_2$ , CO, and a tiny amount of  $CO_2$ . Steam reforming is endothermic. For the reaction to keep going, heat must be provided to the process [20]. The SMR reaction (R1) is:

$$CH_4 + H_2O \leftrightarrow CO + 3H_2$$

$$\Delta H^{\circ}_{298k} = 206.1 \text{ KJ/mol}$$

On the other hand, about 25% of the toxic gas CO is released together with the  $H_2$  yield during reaction (R1). The water-gas shift (WGS) reaction is usually employed to further convert CO into H<sub>2</sub>and a by-product, CO<sub>2</sub>.WGS reacts efficiently only below 450 °C; consequently, it is used to prevent producing the toxic gas, The WGS reaction (R2) is [10]:

$$CO + H_2O \leftrightarrow CO_2 + H_2$$
  $\Delta H^{\circ}_{298k} = -41.15 \text{ KJ/mol}$ 

Reaction (R3) can be considered as a superposition of (R1) and (R2).

$$CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$$
  $\Delta H^{\circ}_{298k} = 165 \text{ KJ/mol}$ 

Reaction (R1) is endothermic, while reaction (R2) is exothermic; this means that they can't both obtain high conversion at the same temperature in a single reactor simultaneously. The



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلة جامعة بابل للعلوم الهندسية

#### Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

membrane reactor was developed to facilitate the simultaneous operation of these two reactions (SMR and WGS) in a single reactor with enhanced  $\Box 2$  production and  $\Box \Box 4$  conversion. Because the membrane is made to be  $H_2$  selective, other gas components in the reactor can continue to exist while  $H_2$  is frequently and partially removed from the reactor through membrane permeation as shown in Figure 3.



Figure 3: A membrane reactor structure for methane steam reforming [10].

The performance of the MR was investigated using three parameters, namely: methane conversion  $(X_{CH_4})$ , hydrogen recovery (HR), and permeate side hydrogen purity (HPP), which are defined [21]:



Where  $Q_{CH_4}^{IN}$  is the molar flow rate of methane entering the MR, and  $Q_{CH_4}^{OUT}$  is the outlet molar flow rate of methane.  $Q_{H_2}^{Permeate}$  and  $Q_{H_2}^{Retentate}$  are the molar flow rates of hydrogen in the permeate and retentate sides respectively, while  $Q_{Total}^{Permeate}$  is the molar flow rate of all the gaseous species in the permeate side.

#### 2. Partial oxidation

The method of partial oxidation (POX) is used to extract gray hydrogen from hydrocarbons, mainly natural gas. This technology can be regarded as mature and is available for purchase[22]. Fuel is partially burned in a reformer with a sub-stoichiometric quantity of air, which starts the reaction. In an exothermic process, partial oxidation can be carried out with or without a catalyst [23]. On the other hand, the catalyst greatly raises the reaction yield. CO is produced rather than  $CO_2$  because only partial oxidation of the carbon occurs as a result of the



ISSN: 2616 - 9916

sub-stoichiometric oxygen supply. Nitrogen and hydrogen are the other reaction products if air is used as a substitute for pure oxygen[22].

### 3. Auto-thermal reforming

The combination of SMR and non-catalytic POX is referred to as ATR. Within a single chamber, methane, oxygen, and steam react [23]. Partial oxidation is the burning of hydrocarbons in an atmosphere with less oxygen than required. The heat exchange between exothermic partial oxidation reactions and endothermic steam reforming is defined by the auto-thermal term. The combustion zone (1900°C) and the conversion zone (900°C–1100°C) are where the process occurs[24]. Methane is partially oxidized by oxygen in the reforming reactor, and the endothermic steam reforming reaction is propelled by the heat produced. The air might theoretically be utilized as an oxygen supply, but pure oxygen is used to prevent hydrogen from being contaminated with nitrogen, which is why an air separation unit (ASU) is required[19].

## **CO<sub>2</sub> Capture Methods**

Carbon dioxide can be separated in power plants using three strategies: post-combustion capture, pre-combustion capture, and oxy-combustion.

**1. Post-combustion carbon capture:** Carbon dioxide is captured from flue gas at low pressure (1 bar) and low  $CO_2$  content (3-20%), in general. Separation aims to capture  $CO_2$  from a mixture mostly consisting of nitrogen and oxygen while also considering the effects of flue gas pollutants such as  $SO_X$ ,  $NO_X$ , particulates [26]. Post-combustion carbon capture involves the capturing of  $CO_2$  after fuel combustions (e.g. through the use of membrane separation, chemical looping, physical adsorption, or chemical absorption) [5].





2. Pre-combustion carbon capture: Carbon dioxide is captured from a gas mixture with predominantly  $H_2$ gas at high pressure (15-40 bar) and medium  $CO_2$ content (15-40%) or carbon is produced directly from fossil fuels. In addition to the separation of  $CO_2$  from, the feed gases also consist of CO,  $H_2S$ , as well as other Sulphur components [26]. The pre-combustion method is usually used after fuel combustions and involves oxidation (partially) or gasification of fuel materials to produce  $CO_2$  and  $H_2O$ , in power plant processes [27].



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلة جامعة بابل للعلوم الهندسية



Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916



Figure 5: per-combustion processes.

**3. Oxy-combustion carbon capture:** An alternative method for capturing carbon from fuel gas involves altering the combustion process to increase the amount of  $CO_2$  in the flue gas. Burning the fuel in almost pure oxygen (more than 95%) will allow you to achieve this because the exhaust that results essentially consists of  $CO_2$  and water vapor, which can be easily separated [4][6]. This method integrates the pre-combustion and post-combustion capturing methods. It involves gasifying a fuel material to produce steam through oxidation, resulting in nearly pure oxygen [27]. The main advantage of oxy-fuel combustion is the absence of  $NO_X$  and  $SO_X$  components in the flue gas[28].



#### CO<sub>2</sub> Separation Technologies

When shifted syngas is produced, hydrogen and CO2 must be purified and separated from the other components. Crucial separating techniques for hydrogen production with  $CO_2$  capture include adsorption, absorption, membranes, cryogenic or low-temperature processes, and chemical looping combustion.

**1. Adsorption:** The physical process of adsorption occurs when molecules connect to surfaces that are adsorbed, usually made of solid materials [23]. Adsorbents that particularly capture  $CO_2$  from a gas mixture, such as lithium zirconate  $(Li_2ZrO_3)$ , sodium zirconate  $(Na_2ZrO_3)$ , lithium silicate  $(Li_4siO_4)$  and CaO-based sorbents [29], which react with  $CO_2$  to generate corresponding carbonate [30].

$$Li_2ZrO_3 + CO_2 \leftrightarrow Li_2CO_3 + ZrO_2$$
  $\Delta H^{\circ}_{298k} = -160 \text{ KJ/mol}$ 

$$Na_2ZrO_3 + CO_2 \leftrightarrow Na_2CO_3 + ZrO_2$$
  $\Delta H^{\circ}_{298k} = -149 \text{ KJ/mol}$ 





 $Li_4SiO_4 + CO_2 \leftrightarrow Li_2CO_3 + Li_2SiO_3$ 

 $CaO + CO_2 \leftrightarrow CaCO3$ 

 $\Delta \mathrm{H^{o}}_{298\mathrm{k}} = -143 \mathrm{~KJ/mol}$ 

 $\Delta H^{\circ}_{298k} = -178 \text{ KJ/mol}$ 

A temperature change is the preferred regeneration method for all the acceptors mentioned above. The most promising options at this time are hydrotalcite-like compounds if a pressure change regeneration arrangement is required. These materials show good kinetics and stability when exposed to  $CO_2$  at temperatures as high as 773 K, but their capacity is extremely low at such elevated temperatures[29]. Adsorption procedures include temperature swing adsorption (TSA), vacuum swing adsorption (VSA), pressure swing adsorption (PSA), and pressure-temperature swing adsorption (PTSA)[5]. Since the syngas is at high pressure and may change in pressure with no energy penalty, PSA is the most significant for the separation of hydrogen and  $CO_2$  from it [23].

2. Absorption: To separate industrial gases by absorption, a liquid solvent must be mixed with the gas in a scrubber column, which absorbs some contaminants [23]. Liquid solvents can be divided into chemical and physical solvents. Chemical solvents that are usually used are alkanol amines, such as monoethanolamine (MEA), diethanolamine (DEA), or methyl diethanolamine (MDEA) in aqueous solution. With a purity of over 99.95%, it is estimated that the amine technique can extract between 85 and 95% of the carbon dioxide that exists in flue gas [5]. Typical reactions of  $CO_2$  with MEA for absorbing and regenerating are as follows [31].

Absorbing reactions:

 $MEA + H_2O + CO_2 \rightarrow MEA$  carbonate + heat

Regenerating reactions:

MEA carbonate + heat  $\rightarrow$  MEA + H<sub>2</sub>O + CO<sub>2</sub>

Physical solvents, as compared with chemical solvents, may dissolve  $CO_2$  and regenerate with a smaller heat input at higher temperatures as well as lower pressures. Usually, they facilitate the removal of  $CO_2$  and  $H_2S$  together. Conventional technologies utilizing physical solvents include the Purisol, Selexol, and Rectisol processes [23].

**3. Membrane separation:** Membranes are semi-permeable barriers composed of numerous substances that, through a wide range of strategies, can separate different compounds from a mixture [32]. Membranes are often mentioned as possible methods in post-combustion separation [33]. Permeate refers to the part of the feed that gets beyond the membrane, and retentate refers to the part that doesn't. Essential characteristics of membranes include great mechanical stability, high selectivity, high flux, cheap cost, high chemical stability, and high-cost stability [23]. For hydrogen production with  $CO_2$  capture, both hydrogen and  $CO_2$ -selective membranes are relevant.  $CO_2$ -selective membranes are favored for processes that operate at ambient or sub-ambient temperatures since they are often constructed on rubbery polar polymers. On the other hand, rigid glassy polymers or ceramic and metallic materials are the traditional basis for  $H_2$ -selective membranes, which are suited for operations at



elevated temperatures. It has been suggested that these various membrane material types may be employed in syngas applications requiring  $CO_2$  separation, such as  $H_2$  production plants[34].

- 4. Cryogenic/low-temperature separation: Several species from the gas mixture, such as  $CO_2$  are liquefied by chilling in a cryogenic process through two or three successive stages of compression, cooling, expansion, and phase separation[3]. Hydrogen separation requires cooling the gas mixture to cryogenic temperatures (<150 °C). Different temperature ranges allow contaminant gases to condense, whereas hydrogen stays in the gas phase[23]. Cryogenic separation is used commercially for waste gas streams that contain more than 90%  $CO_2$  because the technique is only profitable above this concentration [33].
- 5. Chemical Looping Combustion (CLC) and Calcium Looping Process (CLP): Chemical looping technology is a novel technique in the carbon capture sector. This approach to removing carbon dioxide from fossil fuel power plants has the potential to be the most effective and economical one [32]. Instead of applying pure oxygen directly for combustion, as in the case of oxy-fuel combustion, a metal oxide is used as an oxygen carrier. While the fuel is oxidizing to produce  $CO_2$  and water, the metal oxide is converted to metal during the process. After that, the metal undergoes one more stage of oxidation and is recycled. While pure  $CO_2$  can be obtained without requiring energy for separation, water, a by-product of the process, can be easily removed by condensation. Numerous low-cost metal oxides, such as  $Fe_2$ , NiO, CuO, and  $Mn_2O_3$  are appropriate for this technique[35]. The calcium looping process is another type of chemical looping. The reversible reaction between carbon dioxide and calcium oxide is the basis of the process. The reaction of connecting CaO and  $CO_2$  is called carbonation [5].



Figure 7: CO<sub>2</sub> capture methods and technologies [36],[33].



#### **Governing Equations**

The governing equations of the model consist of the continuity equation (Eq. (4)), the momentum balance equation (Eq. (5)), and the species transport-reaction equation (Eq. (6))[14]:

$$\nabla(\varepsilon \cdot u \cdot \rho_f) + \frac{\delta}{\delta t}(\varepsilon \cdot \rho_f) = \pm S_i \tag{4}$$

$$\nabla (\varepsilon \cdot u \cdot \rho_f \cdot u) + \frac{\delta}{\delta t} (\varepsilon \cdot \rho_f \cdot u) = -\nabla P - \beta \cdot u + \nabla \tau + \rho_f \cdot g$$
<sup>(5)</sup>

$$\nabla(\varepsilon \cdot u \cdot \rho_f) + \frac{\delta}{\delta t} (\varepsilon \cdot \rho_f)$$
  
=  $-\nabla(\rho_f \cdot D_{i.e} \cdot \nabla m_i) + (1)$   
 $-\varepsilon)\rho M_i \sum_i V_{ij} R_{WGS} \pm S_i - (1)$   
 $-\varepsilon)\rho M_i \sum_j V_{ij} R_{AdS}$  (6)

In the equations reported above, i is the chemical component (  $i = CH_4, H_2O$ . CO,  $H_2 \text{ or } CO_2$ ), j is the reaction number (j = 1, 2, 3, or 4) and  $\beta$  is the friction coefficient given by the following equation ( $\varepsilon = 0.6$  and  $d_p = 5$  mm):

$$\beta = \frac{150\mu_f (1-\varepsilon)^2}{\varepsilon \cdot d_p^2} + \frac{1 \cdot 75(1-\varepsilon)\rho_f}{\varepsilon^3 d_p} |u|$$
(7)

 $R_{WGS}$  is the reaction rate of WGS and  $R_{Ads}$  adsorption rate of carbon dioxide. Tables 2 and 3 summarize the reaction rates and their related kinetic, equilibrium, and adsorption constants.

Table 2: The reaction rate equations of steam methane reforming and CO<sub>2</sub> capture [10],[50],[51].

| Steam Methane Reforming (SMR):<br>$CH_4 + H_2O \leftrightarrow CO + 3 H_2$           | $r_{1} = \frac{k_{1}}{P_{H_{2}}^{2.5}} \frac{(P_{CH_{4}}P_{H_{2}O} - \frac{P_{H_{2}}^{3}P_{CO}}{K_{e1}})}{DEN^{2}}$                    |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Water Gas Shift Reaction (WGS):<br>$CO + H_2O \qquad \leftrightarrow CO_2 + H_2$     | $r_{2} = \frac{k_{2}}{P_{H_{2}}} \frac{(P_{CO}P_{H_{2}O} - \frac{P_{H_{2}}P_{CO_{2}}}{K_{e_{2}}})}{DEN^{2}}$                           |
| Direct Steam Reforming Reaction (DSR):<br>$CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$ | $r_{3} = \frac{k_{3}}{\frac{R_{3}}{P_{H_{2}}^{3.5}}} \frac{(P_{CH4}P_{H_{2}O}^{2} - \frac{P_{H_{2}}^{4}P_{CO_{2}}}{K_{e3}})}{DEN^{2}}$ |
| $CO_2Adsorption Reaction:$ $CaO + CO_2 \leftrightarrow CaCO3$                        | $r_4 = \frac{\overline{\eta}}{M_{CaO}} k_4 (X_{Max} - X) (\upsilon_{CO2} - \upsilon_{CO2.eq})$                                         |



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلة جامعة بابل للعلوم الهندسية



ISSN: 2616 - 9916



The mass flow of species across the dense Pd-Ag membrane is clarified by the source/sink term defined in Eq. (8), and the  $H_2$  flux is given by Eq. (9) applying Richardson's formula [14]:

$$S_{i} = \frac{A \cdot J_{i} \ M_{i}}{V}$$
(8)  
$$J_{H_{2}} = \frac{P_{e_{0}} \cdot \exp(\frac{-E_{H_{2}}}{RT})(P_{H_{2}.retentate}^{0.5} - P_{H_{2}.permeate}^{0.5})}{\delta}$$
(9)

Because Ni-based catalyst is inexpensive and has a high  $CH_4$  conversion, it was the most commonly used catalyst in palladium SMR reactors.

Table 3: The reaction constants of the process [50],[52].

| Kinetic-constant coefficients: |                                                                          |
|--------------------------------|--------------------------------------------------------------------------|
| N B III                        | $k_{3} = 1.02 \times 10^{15} \exp(-\frac{243900}{RT})$<br>$k_{4} = 0.35$ |
|                                | $K_{e1} = 1.198 \times 10^{13} \exp(-\frac{26830}{RT})$                  |
| Equilibrium constants:         | $K_{e2} = 1.767 \times 10^{-2} \exp(\frac{4400}{RT})$                    |
| Care                           | $K_{e3} = 2.117 \times 10^{11} \exp(-\frac{22430}{RT})$                  |
|                                | $k_{CH4} = 6.65 \times 10^{-4} \exp(\frac{38280}{RT})$                   |
|                                | $k_{H20} = 1.77 \times 10^5 \exp(-\frac{88680}{RT})$                     |
| Adsorption constants:          | $k_{H2} = 6.12 \times 10^{-9} \exp(\frac{82900}{RT})$                    |
|                                | $k_{CO} = 8.23 \times 10^{-5} exp(\frac{70650}{BT})$                     |

The mass and energy balances are shown below (Eqs. (10)- (12)) [50]:

$$\frac{dF_{i.ret}}{dw} = \sum \varphi_i r_j - r_{i.perm} \tag{10}$$



$$\frac{dF_{i.perm}}{dw} = \sum \pm r_{i.perm}$$

$$\frac{dT}{dw} = \frac{U_{a.c} (T_a - T) - \sum r_j \times H_j + (U_{a.R} \times \left(\frac{1}{\frac{1}{W} + \frac{1}{\varepsilon_{gas}} - 1}\right) \times (T_a^4 - T^4)}{\sum F_{i.ret} \times C_{P,i}}$$

$$(11)$$

The paper's primary goal is to evaluate CO2 capture technologies for hydrogen production in order to reduce CO2 emissions and provide usable, clean fuel for usage in many applications. This study contains the types of hydrocarbon input, methods for production, catalyst types, and CO2 capture materials, as well as the operation conditions. The review will focus on the technologies for CO2 capture in hydrogen production by natural gas steam reforming with membrane systems.

Ghasemzadeh et al.;[14] used a 2D model for a hybrid sorption-enhanced membrane reactor (HSE-MR) for hydrogen production during the WGS reaction. Only hydrogen can pass through the Pd-Ag membrane. A catalyst/sorbent weight ratio of 1/12 was used.H2 recovery was 24% at 1 bar, 51% at 10 bar, and the CO conversion was 90.3% at 1 bar, 99.9% at 10 bar, and 573 K. Through CFD evaluation, it was demonstrated that the HSE-MR system achieved better CO conversion and hydrogen recovery during the WGS reaction than the SER and MR methods. Using COMSOL multiphysics modeling.

Subraveti et al.;[53] The VSA process was simulated utilizing a one-dimensional, nonisothermal mathematical model that was developed by solving mass, momentum, and energy using three different adsorbents in this process, namely, Zeolite 13X, UTSA-16, and IISERP MOF2, which are optimized to reduce the  $CO_2$  capture cost. To evaluate and compare the best techno-economic performances of VSA technology for three adsorbents, (MEA)-based absorption technology was utilized as a baseline situation. Looking at the results, it can be concluded that the four-step VSA process with IISERP MOF2 is greater than the other two adsorbents. It has the lowest  $CO_2$  capture cost of 33.6  $\in$  per tonne of  $CO_2$ avoided and the lowest  $CO_2$  avoided cost of 73.0  $\in$  per tonne of  $CO_2$ avoided. UTSA-16 and Zeolite 13X produced  $CO_2$ avoided costs per tonne of  $CO_2$  avoided of 104.9 and 90.9  $\in$ , respectively. Using MATLAB software.

Ghungrud et al.;[54] investigated sorption-enhanced steam methane reformation using hybrid materials consisting of Ni, Co, and hydrotalcite in an experimental system. The use of multifunctional hybrid materials shows promise for low-temperature on-site  $CO_2$  capture and high-purity hydrogen production. These materials were directed to as  $Ni_{10}Co_{30}$ /HTlc (or  $HM_1$ ) and  $Ni_{20}Co_{20}$ /HTlc (or  $HM_2$ ) In order to enhance the composite material's basicity and thermal stability, Ce species were subsequently added to these substances. Strongly basic sites for  $CO_2$  adsorption were created by the stimulation with Ce, which enhanced the generation of  $H_2$ . Specifically, Ce- $HM_1$  exhibited the highest breakthrough time (45 min) and adsorption capacity (1.74 mol  $CO_2$ /kg sorbent), whereas Ce- $HM_2$  exhibited a breakthrough time of 30 min and adsorption capacity ( 1.51 mol  $CO_2$ /kg sorbent), producing >90 mol%  $H_2$  at T =773 K, P = 0.1 MPa, S/ C= 6, and gas hourly space velocity or GHSV=3600 mL/(g-h).



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مـــجلــة جـــــامعة بــــــابـل للعلــــوم الهندسية

Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

A. Outman et al.;[55] used a conversion-type reactor for hydrogen production via steam methane reforming and  $CO_2$  capture, Aspen HYSYS V12.1 was used to evaluate and simulate the catalytic membrane reactor in a steady-state model with varying steam-to -carbon ratios (S/C=1-10). Hydrogen production increased in conjunction with the rise in the S/C ratio. The most efficient solvent for this carbon capture system is determined by simulating three absorbents (MDEA, MEA, and propylene carbonate), where 98.8% of the  $CO_2$  can be adsorbed by this system.

Ji et al.;[10] utilized a CFD model for the steam reforming of methane in the sorptionenhanced membrane reactor (SEMR) using a Ni/ $Al_2O_3$  catalyst and  $Na_2ZrO_3$  as  $CO_2$ sorbent. This reactor increases reaction rates,  $CH_4$  conversion, and  $H_2$  yield in addition to lowering the  $CO_2$  fraction and improving the production of hydrogen. 20% of the volume is estimated to be occupied by the sorbent  $Na_2ZrO_3$ . Compared to the conventional membrane reactor, the CO fraction level was lowered by 1 order of magnitude in the sorption-enhanced membrane reactor, reducing the chance of  $H_2$  permeation decay. At the output,  $H_2$  fraction is 80.79% mol, reducing outlet  $CO_2$  and CO by more than 95%. Use the ANSYS software.

Wu et al.;[56] A  $CO_2$ -permselective membrane reactor was experimentally evaluated for enhancing hydrogen production by the steam reforming of methane (SRM) with  $CO_2$ - capture .A ceramic-carbonate dual-phase membrane with a two-layered asymmetric wall structure builds up the membrane reactor. The samarium-doped ceria (SDC) layer forms a thin (~150µm)  $CO_2$ permselective SDC/molten-carbonate dual-phase layer after molten carbonate infiltration, with a small amount of bismuth-yttrium-samarium oxide (BYS) to the support layer to render it nonwettable. The membrane reactor's output product composition shows that the removal of  $CO_2$  in situ efficiently encourages the conversion of water to gas shift in SRM, hence enhancing the yield of hydrogen. utilizing Ni  $/SiO_2$  as a catalyst. 90% hydrogen yield and 84%  $CO_2$  recovery are achieved by the membrane reactor operating at 900 °C and 1 atm of feed pressure.

Lee et al.;[13] A numerical evaluation of five different reactors, an MR with countercurrent flow, a PBR, an MR with co-current flow, a SEMR with co-current flow, and a SEMR with counter-current flow, has been carried out utilizing 1-D modeling for reactor design. Because of its inexpensive nature and excellent reactivity, CaO was added as an adsorbent. Based on the process simulation  $H_2$  production rates in a PBR, MR, and SEMR have been determined to be 0.012, 0.011, and 0.012 mol/s, whereas  $CO_2$  emission rates at 773 K were estimated to be 0.003, 0.004, and 0.002 mol/s. A MR had the lowest unit  $H_2$  production cost when compared to the other reactors, as the economic study revealed that the unit  $H_2$  production costs for a PBR, MR, and SEMR were 4.53, 1.98, and 3.04 \$ kg  $H_2^{-1}$ , respectively. Using Aspen Plus® software.

Bang et al.;[57] A Pd-Cu catalytic membrane reactor integrated with PSA via a WGS reaction for hydrogen production was investigated both mathematically and experimentally. By adding additional adsorption beds, the PSA techniques' ability to recover and purify  $H_2$  can be improved. The catalytic MR experiments took place using a combination of CO,  $H_2$ , and  $CO_2$  (65: 30: 5 vol %) at 300–350 °C and 6–10 bar. As permeate  $H_2$  is a product, the sweeping gas that was used in this process was  $H_2$ . For the WGS process in the developed MR, a commercial high-temperature shift (HTS) catalyst (Sud-Chemie Catalysts, Japan) that included chromium

# ARTICLE

#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مـجلـة جــــامعة بـــــابـل للعلــــوم الهندسية

#### Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

oxide  $(Cr_2O_3)$ , chromium trioxide  $(CrO_3)$ , aluminum oxide  $(Al_2O_3)$ , ), and copper oxide (CuO) was used. The investigation showed that H2 was recovered from the retentate using layered two-bed and arranged four-bed PSA techniques. The adsorption beds were filled with activated carbon on the bottom and zeolite 13X on the top at a ratio of 6:4. Zeolite 13X was utilized to adsorb CO, while activated carbon was primarily used to absorb  $CO_2$  in the layered bed. Using a four-bed PSA with integrated Pd-Cu catalytic MR, it was possible to achieve  $H_2$  values of over 99.9991%, 91.37% recovery, and 8.67 ppm CO. The recovery for  $H_2$  produced with less than 0.2 ppm CO was decreased to 85.99% with 0.15 ppm CO.

Alrashed et al.; [58] Aspen Custom Modeler (ACM) built a 1D pseudo-homogenous model with a S/C ratio of 3 in order to compare traditional and Pd-Au membrane steam methane reforming (SMR) methods. At 30 bar and 550 °C, the membrane SMR method was used. The typical SMR process operates at 900 °C and 23 bar at the reforming reactor, where it performs better. The VSA unit was used to remove  $CO_2$  from the other gases. The remaining separated gases are recycled back into the process, and the VSA produces a 90.8% recovered  $CO_2$  stream. The results of this study reveal that, in comparison to the conventional SMR process, the membrane reactor SMR method has a greater methane conversion and hydrogen yield by 4% and 20%, respectively. Additionally, it provides a 10% increase in process energy efficiency compared to the traditional method, which lowers the cost of producing hydrogen. The costs for producing hydrogen with membrane SMR and conventional techniques were found to be 2.87 and 4.54 \$/kg  $H_2$ , respectively.

Abbasi et al., [59] Applying a steady-state, one-dimensional heterogeneous catalytic reaction model, the effectiveness of chemical looping combustion (CLC) in a steam reformer with Pd-Ag hydrogen perm-selective membranes (CLC-SRM) support for CO2 capture and hydrogen synthesis was investigated. With AR operating in the rapid fluidization regime and FR operating in the bubbling fluidization regime, CLC is composed of two interconnected fluidized bed reactors. NiO18- $\alpha$ Al2O3 particles have been used as oxygen carriers in CLC. In contrast to a conventional steam reformer (CSR), the simulation results of the CLC-SRM show an increase in methane conversion and hydrogen production of 7.54% and 25.48%, respectively.

Joo et al., [60] designed a 1D model integrating the on-site SMR process for blue hydrogen production with the HFMMs. The SMR-HFMM model was developed and implemented using three possible locations for CO2 capture: dry syngas, PSA tail gas, and flue gas. Five significant performance elements were also used to assess the HFMMs' performance. Every scenario demonstrated excellent CO2 capture performance, and workable values for the quantity of HFMMs were also suggested. The study suggested that on-site SMR with the HFMM process might one day provide an answer to the CO2 emission issue facing on-site SMR facilities.



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلة جامعة بابل للعلوم الهندسية



### Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

## Table 4: Summarized technologies for $CO_2$ capture in hydrogen production studies.

| No<br>· | Ref. | Technique               | Production<br>Method | Condition                                       | feedstock | Catalyst<br>& CO <sub>2</sub><br>capture<br>Material                                                | Study<br>type                                     | Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|------|-------------------------|----------------------|-------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | [14] | HSEMR<br>(Pd-Ag)        | Steam<br>reforming   | 1=5/3K<br>P=(1-10)bar                           | Methanol  | Cu/ZnO/<br>Al <sub>2</sub> O <sub>3</sub> &<br>K <sub>2</sub> CO <sub>3</sub>                       | Numeri<br>cal<br>study                            | Period train<br>Period train<br>Period train<br>Period train<br>Period train<br>Period train<br>Period train<br>Period train<br>Period train<br>Period train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2       | [61] | chemical<br>absorption  | Steam<br>reforming   | T=1050°C<br>S/C=3-5                             | Methane   | -&<br>CESARI                                                                                        | Numeri<br>cal<br>study                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3       | [62] | Adsorption<br>(PSA)+CLC | Steam<br>reforming   | T=670°C<br>P=1 bar<br>S/C=2.5                   | Methane   | Ni/Al <sub>2</sub> O <sub>3</sub><br>&CaO/<br>Fe <sub>2</sub> O <sub>3</sub>                        | Experi<br>mental<br>study                         | H, + PSA<br>CCCV, H, O<br>CLCVD, H, V<br>CLCVD, H, |
| 4       | [63] | FBMR                    | Steam<br>reforming   | T=453-<br>513K<br>P=1-3 bar<br>S/C=1.5          | Methanol  | Ni/Al <sub>2</sub> O <sub>3</sub><br>&porous<br>membrane<br>filled with<br>ionic<br>liquids-<br>ILs | Experi<br>mental<br>and<br>Numeri<br>cal<br>study | Stimm<br>Hg<br>Remetete side<br>Graph<br>Hg<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Cappet<br>Hg<br>Hg<br>Cappet<br>Hg<br>Hg<br>Cappet<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5       | [64] | chemical<br>absorption  | Steam<br>reforming   | T=125°C<br>S/C=2.83                             | Methane   | Ni<br>&MDEA                                                                                         | Numeri<br>cal<br>study                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6       | [65] | Adsorption              | Steam<br>reforming   | T=650°C<br>P=1bar<br>S/C=3                      | Methane   | Ni/<br>Cao<br>— Ca <sub>12</sub> Al <sub>14</sub> (                                                 | Numeri<br>cal<br>study                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7       | [55] | chemical<br>absorption  | Steam<br>reforming   | T=800 -<br>1000°C<br>P=14-20<br>atm<br>S/C=1-10 | Methane   | &MDEA,<br>MEA,<br>Propylene<br>carbonate                                                            | Numeri<br>cal<br>study                            | Line Line Line Line Line Line Line Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مبجلية جسامعة بسبابل للعلسوم الهندسية



ISSN: 2616 - 9916

Vol. 33, No.2. \ 2025

8

9

10

11

12

13

14

15

16

[54] Adsorption Steam T =773 K Methane Ni10Co30/ Experi P = 1 bar HTIc and reforming mental S/C=6Ni<sub>20</sub>Co<sub>20</sub>/ study HTIC [66] T=550°C Ni/ Adsorption Acetic Experi Steam \_  $Ce_xZr_{1-x}O_2$ S/C=4acid mental reforming CaO=0.5 --CaO study 4.5 T=400 °C [67] Adsorption Steam Methane & Numeri P=17 bar Hydrotalci reforming cal S/C=3study te Staam cycle T=650 °C Ni/Cao [68] Adsorption Steam Methane Experi P=1 bar reforming  $- Ca_{12}Al_{14}$ mental S/C=3.4 study Adsorption 4-T=353.15 K [53] Steam Methane Numeri -& step VSA P=1.02 bar reforming Zeolite cal 13X, study UTSA-16, and **IISERP** MOF2 CO<sub>2</sub> / 80% N [69] T=100-Methane MEA - & Numeri chemical Steam 125°C absorption reforming and cal **MDEA** study P=1-1.3 bar [70] chemical Steam Methane -& Numeri MDEA/P absorption reforming CO2= 21cal 22% Ζ and study MEA [71] Adsorption Steam T=925°C Methane Ni/ Experi reforming 100 vol% Cao mental /Ca<sub>12</sub>Al<sub>14</sub>O study CO2 CLC T=650°C LDG Experi [72] Steam Ni and reforming Mg mental & study wt%Ce<sub>0.75</sub> Zr<sub>0.25</sub>0<sub>2</sub>  $/Fe_2O_3$ 



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مسجلة جسامعة بسابل للعلسوم الهندسية



Vol. 33, No.2. \ 2025

| 17 | [73] | Adsorption                | Steam<br>reforming            | T=575°C<br>P=1 bar<br>S/C=4               | Methane | NiO/Ni<br>Al <sub>2</sub> 0 <sub>4</sub> &Ca<br>O                                                                   | Experi<br>mental<br>study | Rister for<br>transport<br>Toatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Thatcame<br>Tha |
|----|------|---------------------------|-------------------------------|-------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 | [51] | Adsorption                | Steam reforming               | T=923-<br>1023°C<br>P=1-35 bar<br>S/C=3-7 | Methane | Ni/<br>Al <sub>2</sub> 0 <sub>3</sub> &C<br>aO                                                                      | Numeri<br>cal<br>study    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19 | [74] | Adsorption                | Steam<br>reforming            | T=600°C<br>P=1.031 bar<br>S/C=3           | Methane | Ni/Dolom<br>ite                                                                                                     | Experi<br>mental<br>study | He,He)<br>(CO, CH <sub>2</sub> , CO)<br>Serveral<br>Reference<br>CaCO<br>Regenerater<br>CaCO<br>CaCO<br>Fred.<br>Sorteau<br>Regenerater<br>CaCO<br>CaCO<br>Co,<br>Fred.<br>Sorteau<br>CaCO<br>Co,<br>Fred.<br>Sorteau<br>CaCO<br>Co,<br>Fred.<br>Sorteau<br>CaCO<br>Co,<br>Fred.<br>Sorteau<br>CaCO<br>Co,<br>Fred.<br>Sorteau<br>CaCO<br>Co,<br>Co,<br>Fred.<br>Sorteau<br>CaCO<br>Co,<br>Co,<br>Co,<br>CaCO<br>Co,<br>CaCO<br>Co,<br>Co,<br>Co,<br>Co,<br>Co,<br>Co,<br>Co,<br>Co,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 | [75] | Adsorption                | Steam<br>reforming            | T=650°C<br>P=1bar<br>S/C=4                | Methane | $\begin{array}{c} \mathrm{Ni} /\\ \mathrm{MgAl_2O_4}\\ -\mathrm{Al_2O_3\&C}\\ -\mathrm{Ca_{12}Al_{14}} \end{array}$ | Numeri<br>cal<br>study    | BP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21 | [76] | Chemical<br>absorption    | Auto-<br>Thermal<br>Reforming | T=1200K<br>P=40 atm                       | Methane | Fe-Cr<br>oxide&<br>MEA                                                                                              | Experi<br>mental<br>Study |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22 | [77] | Adsorption<br>PSA         | Steam<br>reforming            | T=30°C<br>P=3bar                          | Methane | -&PKS<br>activated<br>carbon                                                                                        | Experi<br>mental<br>study |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23 | [78] | Adsorption                | Steam<br>reforming            | T=923°C<br>P=0.1MPa<br>S/C=4              | Methane | Ni/<br>CaO<br>— Ca <sub>5</sub> Al <sub>6</sub> O <sub>1</sub>                                                      | Experi<br>mental<br>study |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24 | [79] | Ca–Cu chemical<br>looping | Steam<br>reforming            | T=600-<br>650°C<br>P=5bar<br>S/CO=2       | BFG     | CuO/<br>Al <sub>2</sub> O <sub>3</sub><br>&CaO                                                                      | Experi<br>mental<br>study | H <sub>2</sub> -rich N <sub>2</sub> CO <sub>2</sub> -rich<br>H <sub>2</sub> -rich N <sub>1</sub><br>H <sub>2</sub> O <sub>10</sub> +BFG Air H <sub>2</sub> O <sub>10</sub> +BFG/NG<br>• CaCO <sub>3</sub> • CaO • Cu • CuO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مسجلة جسامعة بسسابل للعلسوم الهندسية



#### Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

| 25 | [80] | Chemical and<br>physical<br>Absorption                    | Auto-<br>thermal<br>reforming | T=430-<br>871°C<br>P= 28-33<br>bar    | NG      | Ni &<br>MDEA<br>,Cansolv<br>and<br>Selexol              | Numeri<br>cal<br>study    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------|-----------------------------------------------------------|-------------------------------|---------------------------------------|---------|---------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | [81] | sorption-<br>enhanced<br>chemical<br>looping<br>reforming | Steam<br>reforming            | T=550-<br>650°C<br>P=1-2 bar<br>S/C=3 | Methane | Fe-Ni &<br>K <sub>2</sub> CO <sub>3</sub><br>– Promoteo | Experi<br>mental<br>study | OK     Image: Sector Sect |

Table 5: Summary of technologies for CO<sub>2</sub> capture in hydrogen production from natural gas steam

## reforming with membrane systems studies.

| No. | Ref. | Technique                                | Condition                               | Catalyst                                  | Adsorbent                                                                | Study type            | Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | [10] | SEMR<br>(Pd)                             | T=500°C<br>Poutlet=0.3<br>MPa<br>S/C =3 | Ni /Al <sub>2</sub> O <sub>3</sub>        | Na <sub>2</sub> ZrO <sub>3</sub>                                         | Numerical<br>study    | CII_FE_0<br>Formation gas<br>Second<br>gas<br>CII_FE_0<br>Menhrane<br>Reactor shall<br>Second<br>gas<br>CII_FE_0<br>Menhrane<br>Reactor shall<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII_FE_0<br>CII<br>CII<br>CII<br>CII<br>CII<br>CII<br>CII<br>CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2   | [13] | SEMR<br>(Pd)                             | T=773-973K<br>P=3 bar<br>S/C=3          | NiO/<br>Al <sub>2</sub> O <sub>3</sub>    | CaO                                                                      | Numerical<br>study    | Retentate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3   | [56] | MR<br>(BYS-SDC<br>ceramic-<br>carbonate) | T=700-900 °C<br>P= 1 atm<br>S/C=3       | Ni /SiO <sub>2</sub>                      | ے ما<br>995                                                              | Experimental<br>Study | Outer Alumina Tube<br>Feed (CH4+H4O)<br>Use (CH4+H |
| 4   | [82] | HSEMR<br>(Pd-Ag)                         | T=250-300°C<br>P=3.5-5.5 bar            | Cu/ZnO/<br>Al <sub>2</sub> O <sub>3</sub> | K <sub>2</sub> CO <sub>3</sub> –<br>promoted<br>(MG30-K)<br>hydrotalcite | Experimental          | Recording Canadian State                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مسجلة جامعة بال للعاصوم الهندسية



## Vol. 33, No.2. \ 2025

| 5  | [25] | SEMR<br>Tubular(Pd/A<br>g)                           | T=(100-<br>550) °C<br>P=1 atm         | 10%<br>CuO/CeO<br>2               | A<br>hydrotalcite<br>-derived<br>Mg–Al<br>mixed oxide | Experimental<br>Study | $\begin{array}{c c} Pdlig nenhrae \\ \lambda r+C0+H_{1}O \longrightarrow Shal & \hline \\ & & & \\ \lambda r \longrightarrow tanen & H_{1} \gg H_{1} \gg H_{1} \longrightarrow H_{1} + \lambda r \\ & & & \\ & & & \\ & & & \\ \lambda h_{1}O_{1} buller filter & H^{0}CO(A_{1} \longrightarrow Ar) \\ & & & \\ H^{1}hrtukkle derivel Me_{1}I under side \\ & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------|------------------------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | [83] | MR<br>(Polaris thin<br>film<br>composite)            | T= 230 °C<br>P=13.4 bar               | JIV<br>VIV                        | EIRS                                                  | Experimental<br>Study | First Happ<br>Proget<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>Sta |
| 7  | [84] | MR<br>(Protonic<br>membrane)<br>+CO2<br>liquefaction | T=800 °C<br>P=26 bar                  | Ni/<br>BaZrO <sub>3</sub>         | 011                                                   | Numerical<br>study    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  | [21] | MR<br>(Pd)                                           | T=673K<br>P=100-400<br>KPa<br>S/C=3.5 | Ni/Al <sub>2</sub> O <sub>3</sub> | zeolite 13X                                           | Experimental          | Permener<br>Sweep<br>Termocouple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9  | [85] | MR<br>(Pd/PSS)                                       | T= 773K<br>ΔP =500kPa<br>S/C=3        | Ru/Al <sub>2</sub> O <sub>3</sub> |                                                       | Experimental          | CHE (99.9%) + H AO<br>CHE (99.9%) + H AO<br>COMMON CHE<br>COMMON CHE<br>COMMON CHE<br>COMMON CHE<br>COMMON CHE<br>CHE<br>COMMON CHE<br>CHE<br>CHE<br>CHE<br>CHE<br>CHE<br>CHE<br>CHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10 | [15] | SE- FBMR                                             | T= 550 °C<br>P =0.2-1 MPa<br>S/C=4    | 19                                | CaO                                                   | Numerical<br>study    | Permitten<br>n<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.Fs.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/eBO.FS.<br>CIL/                                                                                                                                                                                                                                                                           |



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مسجلة جامعة بال للعاصوم الهندسية



## Vol. 33, No.2. \ 2025

| 11 | [86] | FBMR<br>(Pd)                                             | T= 550-650<br>°C<br>P =2-4 bar<br>S/C=4 | catalyst/<br>Al <sub>2</sub> O <sub>3</sub>            | -   | Experimental<br>Study | Summarian balance and the second of the seco           |
|----|------|----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|-----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | [58] | Hybrid VSA-<br>MR<br>(Pd-Au)                             | T= 550 °C<br>P =30 bar<br>S/C=3         | Ni/<br>MgAl <sub>2</sub> O <sub>3</sub>                | ERS | Numerical<br>study    | $H_{0} \Rightarrow 0 + H_{0} + H_{1} + 0 + H_{2} + 0 + H_{2} + 0 + H_{2} + H_{2$ |
| 13 | [59] | CLC-SRM<br>(Pd-Ag)                                       | T= 818°C<br>P =10-20 bar                | NiO <sub>18</sub> /<br>αAl <sub>2</sub> O <sub>3</sub> |     | Numerical<br>study    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14 | [87] | MR<br>(Pd-23% Ag)<br>+ CO <sub>2</sub> capture<br>system | T= 773K<br>P =9 bar<br>S/C=3/1          | Ni/Al <sub>2</sub> O <sub>3</sub>                      |     | Numerical<br>study    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15 | [88] | SE- FBMR<br>(Pd)                                         | T= 823K<br>P=1000 KPa<br>S/C=3          | r In<br>7                                              | CaO | Numerical<br>study    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16 | [89] | MR<br>(a hollow<br>fiber)                                | T= 313.15 K<br>P=20 bar                 | 11                                                     | 995 | Numerical<br>study    | (a)<br>Syngas production<br>Bedoming<br>Veaur pa sinit<br>(b)<br>Svesp<br>gas<br>Hollow Fibre Module<br>Retentiato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17 | [90] | MR<br>(Pd-23%Ag)                                         | T= 450 °C<br>P =50 barg                 | -                                                      | -   | Experimental<br>Study | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلية جامعة بابل للعلوم الهندسية



Vol. 33, No.2. \ 2025

ISSN: 2616 - 9916

| 18 | [57] | MR<br>(Pd–Cu )+<br>4bed PSA                 | T=360-380°C<br>P= 6-10 bar<br>S/C=1-5 | $Al_2O_3$ ,<br>$Cr_2O_3$ ,<br>$CrO_3$<br>and CuO | activated<br>carbon and<br>zeolite 13X | Experimental<br>and Numerical<br>Study | (a) Provide for<br>Contractions of the second |
|----|------|---------------------------------------------|---------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | [91] | PBIMR<br>(Pd/Ag)                            | T= 500 °C<br>P =1bar<br>S/C=3         | Ni/Al <sub>2</sub> O <sub>3</sub>                | ERS                                    | Numerical<br>study                     | $\begin{array}{c c} F_{p}(CH_{a},H_{i}\underline{O}) & \hline Annulus (Retentate) \\ side & & & \\ \hline & & & & \\ \hline & & & & \\ G_{ij}(sweep \ gab) & \hline Tube (Permeate) \ side & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20 | [50] | SEMR<br>(Pd–Ru)                             | T=(673-873)<br>K<br>P=1 bar           | Ni/<br>MgAl <sub>2</sub> O <sub>3</sub>          | CaO                                    | Numerical<br>study                     | () Countertor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12 | [60] | SMR-HFMM<br>(polymer-<br>based<br>membrane) | T=(700-850)<br>°C<br>P= 8.8 bar       |                                                  |                                        | Experimental<br>and Numerical<br>Study |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### **Summary**

After reviewing the previously described study, we came to the following conclusions:

- The most widely used and inexpensive method to produce hydrogen from natural gas involves steam methane reforming.
- In addition to discussing new carbon dioxide capture methods and technologies, this study looks at significant technologies that use oxy-, post-, and pre-combustion methods.
- > Sorption-enhanced membrane reactor (SEMR) is shown to be the most effective technique, surpassing both standalone membrane and adsorbent reactors in terms of  $CO_2$  capture efficiencies and higher H<sub>2</sub> yield.
- ANSYS, Aspen Plus, MATLAB, and COMSOL These software programs are used to simulate the experimental data, evaluate the fundamental concepts of mass, momentum, and energy in a process, and compare the modeling and simulation results with actual outcomes.



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مـــجلـة جــــامعة بـــــابل للعلــــوم الهندسية



ISSN: 2616 - 9916

## Vol. 33, No.2. \ 2025

| Acronyms | list |
|----------|------|
|----------|------|

| 1101 0119 1110 110 | -                                         |
|--------------------|-------------------------------------------|
| HSE-MR             | Hybrid sorption-enhanced MR               |
| MR                 | Membrane reactor                          |
| SE                 | Sorption-enhanced                         |
| SER                | Sorption-enhanced reactor                 |
| SMR                | Steam methane reforming                   |
| POX                | Partial oxidation                         |
| ATR                | Auto-thermal reforming                    |
| NG                 | Natural gas                               |
| DACC               | Direct Air Carbon Capture                 |
| HTSE               | High Temperature Steam Electrolysis       |
| CFD                | Computational fluid dynamics              |
| SRM                | Steam Reformer Assisted by Membranes      |
| MDEA               | Methyl-diethanolamine                     |
| MEA                | Monoethanolamine                          |
| PZ                 | Piperazine                                |
| Pd                 | palladium                                 |
| MA-GSR             | Membrane-assisted gas switching reforming |
| FBMR               | Fluidized bed membrane reactor            |
| PBIMR              | Packed bed inert membrane reactor         |
| HFMM               | Hollow fiber membrane module              |
| PSS                | Porous stainless steel                    |
| WGS                | Water gas shift                           |
| CCS                | Carbon capture and storage                |
| CCUS               | Carbon capture, utilization, and storage  |
| GHG                | Greenhouse gas                            |
| ASU                | Air separation unit                       |
| CMS                | Carbon molecular sieves                   |
| CLC                | Chemical looping combustion               |
| CLR                | Chemical looping reforming                |
| LDG                | Linz-Donawitz converter gas               |
| PKS                | Palm kernel shell                         |



## JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مـــجلـة جــــامعة بـــــابـل للعلــــوم الهندسية



## Vol. 33, No.2. \ 2025

| CESAR1<br>– AMP       | An aqueous blend of 13 wt% of piperazine and 27 wt% of 2-Amino-2- methyl-1-propanol      |
|-----------------------|------------------------------------------------------------------------------------------|
| BFG                   | blast furnace gases                                                                      |
| S/C                   | steam to carbon ratio                                                                    |
| S/B                   | steam to biomass ratio                                                                   |
| Nomenclatu            | re                                                                                       |
| V <sub>ij</sub>       | Stoichiometric coefficient                                                               |
| $m_i$                 | mass fraction of species i                                                               |
| ε                     | Void fraction of the packed bed                                                          |
| S <sub>i</sub>        | sink/source that indicating the flux of permeation of the i component through the        |
|                       | Membrane.                                                                                |
| M <sub>i</sub>        | Molecular weight of ith compound, g/ mole.                                               |
| D                     | Diameter (m)                                                                             |
| $d_p$                 | Catalyst diameter (m)                                                                    |
| R                     | Gas constant coefficient (8.314 kJ/kmol.k)                                               |
| Т                     | Temperature (k)                                                                          |
| r <sub>j</sub>        | The reaction rate of j (kmol/m <sup>3</sup> .s)                                          |
| $k_{1}, k_{3}$        | Methane Kinetic-constant coefficients (kmol .pa <sup>0.5</sup> /(kg.s)                   |
| <i>k</i> <sub>2</sub> | Methane Kinetic-constant coefficient (kmol /(pa.kg.s ))                                  |
| <i>k</i> <sub>4</sub> | Carbon dioxide Kinetic-constant coefficient                                              |
| $K_{e1}, K_{e3}$      | Methane equilibrium constant reactions, (pa <sup>-1</sup> )                              |
| K <sub>e2</sub>       | Methane equilibrium constant reaction                                                    |
| $K_{CH4} K_{CO} K_H$  | $_2$ CH <sub>4</sub> , CO and H <sub>2</sub> constants of adsorption (pa <sup>-1</sup> ) |
| K <sub>H2O</sub>      | $H_2O$ constant of adsorption                                                            |
| u                     | velocity (m/s)                                                                           |
| F <sub>i</sub>        | Molar flow rate (mol /s)                                                                 |
| Р                     | Total pressure (bar)                                                                     |
| P <sub>i</sub>        | Partial pressure of component i (bar)                                                    |
| $E_{H2}$              | the apparent activation energy (kJ/mol)                                                  |
| $P_{e0}$              | the pre-exponential factor ( $mol/m^2$ .s.bar <sup>0.5</sup> )                           |
| F <sub>i.perm</sub>   | Molar flow rate of compound i in the permeate side (mol/s)                               |
| F <sub>i.ret</sub>    | Molar flow rate of i in the retentate side(mol/s)                                        |
| $\varphi_i$           | Stoichiometric coefficient of component i                                                |

# ARTICLE

#### JOURNAL'S UNIVERSITY OF BABYLON FOR ENGINEERING SCIENCES (JUBES) مجلة جامعة بابل للعلوم الهندسية



ISSN: 2616 - 9916

#### Vol. 33, No.2. \ 2025

| r <sub>j</sub>       | Reaction rate of j (mol/m <sup>3</sup> .s)                 |
|----------------------|------------------------------------------------------------|
| r <sub>i.perm</sub>  | Permeation rate of i (mol/m <sup>3</sup> .s)               |
| $T_a$                | Wall temperature(K)                                        |
| U <sub>a.C</sub>     | Convection heat transfer coefficient (W/m <sup>2</sup> .K) |
| U <sub>a,R</sub>     | Radiation heat transfer coefficient(W/m <sup>2</sup> .K)   |
| w                    | Catalyst weight(g)                                         |
| $v_{CO2}$            | Gas phase $CO_2$ mole fraction                             |
| υ <sub>CO2 ,eq</sub> | Equilibrium $CO_2$ mole fraction                           |
| X <sub>MAX</sub>     | Maximum carbonation conversion fraction of adsorbent       |
| Egas                 | Emissivity coefficient                                     |
| η                    | Effectiveness factor                                       |
| C <sub>p.i</sub>     | Heat capacity of i (J/kg.K)                                |
| H <sub>j</sub>       | Heat of reaction j ( kJ/mol).                              |
| Greek let            | ter                                                        |
| ε                    | Porosity of the catalyst                                   |
| μ                    | Gas viscosity $(kg \cdot m^{-1}s^{-1})$                    |
| $ ho_f$              | Density of fluid $(kg \cdot m^{-3})$                       |
|                      |                                                            |

 $\delta$  Membrane thickness (m)

#### References

- [1] G. Cavusoglu *et al.*, "Structure and activity of flame made ceria supported Rh and Pt water gas shift catalysts," *Appl. Catal. A Gen.*, vol. 504, pp. 381–390, 2015, doi: 10.1016/j.apcata.2015.01.047.
- [2] M. Shokrollahi Yancheshmeh, H. R. Radfarnia, and M. C. Iliuta, "High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process," *Chem. Eng. J.*, vol. 283, pp. 420–444, 2016, doi: 10.1016/j.cej.2015.06.060.
- [3] Z. Dai and L. Deng, "Membranes for CO2 capture and separation: Progress in research and development for industrial applications," *Sep. Purif. Technol.*, p. 126022, 2023, doi: 10.1016/j.seppur.2023.126022.
- [4] S. I. Plasynski, J. T. Litynski, H. G. McIlvried, and R. D. Srivastava, "Progress and new developments in carbon capture and storage," *CRC. Crit. Rev. Plant Sci.*, vol. 28, no. 3, pp. 123–138, 2009, doi: 10.1080/07352680902776440.
- [5] P. Madejski, K. Chmiel, N. Subramanian, and T. Kus, "Methods and Techniques for CO 2 Capture : Review of Potential," *Energies*, vol. 15, p. 887, 2022.

## ARTICLE



#### Vol. 33, No.2. \ 2025

- [6] M. S. Yancheshmeh, H. R. Radfarnia, and M. C. Iliuta, "High Temperature CO2 Sorbents and their Application for Hydrogen Production by Sorption Enhanced Steam Reforming Process," *Chem. Eng. J.*, 2015, doi: 10.1016/j.cej.2015.06.060.
- [7] K. Nakagawa and T. Ohashi, "A novel method of CO 2 capture from high temperature gases," *J. Electrochem. Soc.*, vol. 145, no. 4, p. 1344, 1998.
- [8] E. Ochoa-Fernández, M. Rønning, T. Grande, and D. Chen, "Synthesis and CO2 capture properties of nanocrystalline lithium zirconate," *Chem. Mater.*, vol. 18, no. 25, pp. 6037– 6046, 2006.
- [9] G. Ji, M. Z. Memon, H. Zhuo, and M. Zhao, "Experimental study on CO2 capture mechanisms using Na2ZrO3 sorbents synthesized by soft chemistry method," *Chem. Eng. J.*, vol. 313, pp. 646–654, 2017, doi: 10.1016/j.cej.2016.12.103.
- [10] G. Ji, M. Zhao, and G. Wang, "Computational fluid dynamic simulation of a sorptionenhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming," *Energy*, vol. 147, pp. 884–895, 2018, doi: 10.1016/j.energy.2018.01.092.
- [11] M. KATO and K. NAKAGAWA, "New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO2 absorbent," J. Ceram. Soc. Japan, vol. 109, no. 1275, pp. 911–914, 2001.
- [12] M. Olivares-Marín, T. C. Drage, and M. M. Maroto-Valer, "Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures," *Int. J. Greenh. Gas Control*, vol. 4, no. 4, pp. 623–629, 2010.
- [13] H. Lee, B. Lee, M. Byun, and H. Lim, "Comparative techno-economic analysis for steam methane reforming in a sorption-enhanced membrane reactor: Simultaneous H2 production and CO2 capture," *Chem. Eng. Res. Des.*, vol. 171, pp. 383–394, 2021, doi: 10.1016/j.cherd.2021.05.013.
- [14] K. Ghasemzadeh, R. Zeynali, A. Basile, and A. Iulianelli, "ScienceDirect CFD analysis of a hybrid sorption-enhanced membrane reactor for hydrogen production during WGS reaction," *Int. J. Hydrogen Energy*, pp. 1–10, 2017, doi: 10.1016/j.ijhydene.2017.06.152.
- [15] Y. Chen, C. J. Lim, J. R. Grace, and J. Zhang, "Hydrogen Production in a Sorption-Enhanced Fluidized-Bed Membrane Reactor : Operating Parameter Investigation," 2014.
- [16] M. Yu, K. Wang, and H. Vredenburg, "Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen," *Int. J. Hydrogen Energy*, vol. 46, no. 41, pp. 21261–21273, 2021, doi: 10.1016/j.ijhydene.2021.04.016.
- [17] P. Nikolaidis and A. Poullikkas, "A comparative overview of hydrogen production processes," *Renew. Sustain. Energy Rev.*, vol. 67, pp. 597–611, 2017, doi: 10.1016/j.rser.2016.09.044.
- [18] M. Younas, S. Shafique, A. Hafeez, F. Javed, and F. Rehman, "An Overview of Hydrogen Production : Current Status, Potential, and Challenges," *Fuel*, vol. 316, no. January, p. 123317, 2022, doi: 10.1016/j.fuel.2022.123317.
- [19] C. Antonini and M. Mazzotti, "Sustainable Energy & Fuels Hydrogen production from





ISSN: 2616 - 9916

natural gas and biomethane with carbon capture and storage – A techno-environmental analysis †," pp. 2967–2986, 2020, doi: 10.1039/d0se00222d.

- [20] A. Boretti and B. K. Banik, "Advances in Hydrogen Production from Natural Gas Reforming," Adv. Energy Sustain. Res., vol. 2, no. 11, p. 2100097, 2021, doi: 10.1002/aesr.202100097.
- [21] K. Kian *et al.*, "Prospects of CO2 capture via 13X for low-carbon hydrogen production using a Pd-based metallic membrane reactor," *Chem. Eng. J.*, vol. 407, no. September, 2021, doi: 10.1016/j.cej.2020.127224.
- [22] J. M. M. Arcos and D. M. F. Santos, "The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production," *Gases*, vol. 3, no. 1, pp. 25–46, 2023, doi: 10.3390/gases3010002.
- [23] M. Voldsund, K. Jordal, and R. Anantharaman, "Hydrogen production with CO2 capture," *Int. J. Hydrogen Energy*, vol. 41, no. 9, pp. 4969–4992, 2016, doi: 10.1016/j.ijhydene.2016.01.009.
- [24] A. Kec and M. Bayat, *Hydrogen production*. 2019. doi: 10.1016/B978-0-12-814853-2.00003-5.
- [25] K. Li, "Article in press," 2014, doi: 10.1016/j.cattod.2014.02.050.
- [26] P. H. M. Feron and C. A. Hendriks, "CO2 capture process principles and costs," Oil Gas Sci. Technol., vol. 60, no. 3, pp. 451–459, 2005, doi: 10.2516/ogst:2005027.
- [27] O. A. Odunlami, D. A. Vershima, T. E. Oladimeji, S. Nkongho, S. K. Ogunlade, and B. S. Fakinle, "Advanced techniques for the capturing and separation of CO2 A review," *Results Eng.*, vol. 15, no. June, p. 100512, 2022, doi: 10.1016/j.rineng.2022.100512.
- [28] I. Ghiat and T. Al-ansari, "A review of carbon capture and utilisation as a CO 2 abatement opportunity within the EWF nexus," J. CO2 Util., vol. 45, no. December 2020, p. 101432, 2021, doi: 10.1016/j.jcou.2020.101432.
- [29] E. Ochoa-Fernández *et al.*, "Process design simulation of H2 production by sorption enhanced steam methane reforming: Evaluation of potential CO2 acceptors," *Green Chem.*, vol. 9, no. 6, pp. 654–66, 2007, doi: 10.1039/b614270b.
- [30] G. Ji *et al.*, "Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures," *Appl. Energy*, vol. 267, no. March, p. 114874, 2020, doi: 10.1016/j.apenergy.2020.114874.
- [31] Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, and S. P. Chai, "Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review," *J. Nat. Gas Chem.*, vol. 21, no. 3, pp. 282–298, 2012, doi: 10.1016/S1003-9953(11)60366-6.
- [32] N. S. Sifat and Y. Haseli, "A critical review of CO2 capture technologies and prospects for clean power generation," *Energies*, vol. 12, no. 21, 2019, doi: 10.3390/en12214143.
- [33] S. K. I. Borho and J. J. M. S. Schmidt, "Review : CO 2 capturing methods of the last two





ISSN: 2616 - 9916

decades," Int. J. Environ. Sci. Technol., vol. 20, no. 7, pp. 8087–8104, 2023, doi: 10.1007/s13762-022-04680-0.

- [34] H. Lin *et al.*, "CO2-selective membranes for hydrogen production and CO2 capture Part II: Techno-economic analysis," *J. Memb. Sci.*, vol. 493, pp. 794–806, 2015, doi: 10.1016/j.memsci.2015.02.042.
- [35] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, "An overview of current status of carbon dioxide capture and storage technologies," *Renew. Sustain. Energy Rev.*, vol. 39, pp. 426–443, 2014, doi: 10.1016/j.rser.2014.07.093.
- [36] V. S. Sikarwar et al., "Progress in in-situ CO2-sorption for enhanced hydrogen production," *Prog. Energy Combust. Sci.*, vol. 91, no. June 2021, 2022, doi: 10.1016/j.pecs.2022.101008.
- [37] M. Mulder, "Phase Inversion Membranes," no. 1967, 2000.
- [38] G. R. Guillen, Y. Pan, M. Li, and E. M. V Hoek, "Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation : A Review," pp. 3798–3817, 2011, doi: 10.1021/ie101928r.
- [39] X. Dong, D. Lu, and T. A. L. Harris, "Polymers and Solvents Used in Membrane Fabrication : A Review Focusing on Sustainable Membrane Development," 2021.
- [40] J. Jaafar and A. M. Nasir, "Grand Challenge in Membrane Fabrication : Membrane Science and Technology," vol. 1, no. April, pp. 1–6, 2022, doi: 10.3389/frmst.2022.883913.
- [41] B. Singh, V. Kochkodan, R. Hashaikeh, and N. Hilal, "A review on membrane fabrication : Structure , properties and performance relationship," vol. 326, pp. 77–95, 2013.
- [42] C. Bărdacă Urducea *et al.*, "Control of nanostructured polysulfone membrane preparation by phase inversion method," *Nanomaterials*, vol. 10, no. 12, p. 2349, 2020.
- [43] A. Abdolahi, E. Hamzah, Z. Ibrahim, and S. Hashim, "Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization," pp. 1487–1494, 2012, doi: 10.3390/ma5081487.
- [44] J. E. Cadotte, R. J. Petersen, R. E. Larson, and E. E. Erickson, "A new thin-film composite seawater reverse osmosis membrane," *Desalination*, vol. 32, pp. 25–31, 1980.
- [45] D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes: A topological report," Us Doe, pp. 9–11, 2003, [Online]. Available: http://www.fischer-tropsch.org/DOE/DOE\_reports/NETL/2003-1200/NETL-2003-1200.pdf
- [46] Y. Zhang, J. Sunarso, S. Liu, and R. Wang, "Current status and development of membranes for CO2/CH4 separation: A review," *Int. J. Greenh. Gas Control*, vol. 12, pp. 84–107, 2013, doi: 10.1016/j.ijggc.2012.10.009.
- [47] J. H. Park, S. J. Chung, D. Li, and Y. S. Lin, "Dual-Phase Membrane for Carbon Dioxide Separation at High Temperature," *Ind. Eng. Chem. Res.*, vol. 44, pp. 7999–8006, 2005.
- [48] M. Anderson and Y. S. Lin, "Carbonate-ceramic dual-phase membrane for carbon dioxide separation," J. Memb. Sci., vol. 357, no. 1–2, pp. 122–129, 2010, doi: 10.1016/j.memsci.2010.04.009.

# ARTICLE



Vol. 33, No.2. \ 2025

- [49] M. R. Cerón *et al.*, "Surpassing the conventional limitations of CO2 separation membranes with hydroxide/ceramic dual-phase membranes," *J. Memb. Sci.*, vol. 567, pp. 191–198, 2018, doi: 10.1016/j.memsci.2018.09.028.
- [50] H. Lee, A. Kim, B. Lee, and H. Lim, "Comparative numerical analysis for an e ffi cient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor," *Energy Convers. Manag.*, vol. 213, no. February, p. 112839, 2020, doi: 10.1016/j.enconman.2020.112839.
- [51] S. Z. Abbas, V. Dupont, and T. Mahmud, "Modelling of H2 production in a packed bed reactor via sorption enhanced steam methane reforming process," *Int. J. Hydrogen Energy*, vol. 42, no. 30, pp. 18910–18921, 2017, doi: 10.1016/j.ijhydene.2017.05.222.
- [52] A. H. Kassi and T. A. Al-Hattab, "A CFD model of natural gas steam reforming in a catalytic membrane reactor: Effect of various operating parameters on the performance of CMR," *Int. J. Hydrogen Energy*, vol. 56, no. December 2023, pp. 780–796, 2024, doi: 10.1016/j.ijhydene.2023.12.156.
- [53] S. G. Subraveti, S. Roussanaly, R. Anantharaman, L. Riboldi, and A. Rajendran, "Technoeconomic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas," *Sep. Purif. Technol.*, vol. 256, no. October 2020, 2021, doi: 10.1016/j.seppur.2020.117832.
- [54] S. A. Ghungrud, K. D. Dewoolkar, and P. D. Vaidya, "Cerium-promoted bi-functional hybrid materials made of Ni, Co and hydrotalcite for sorption-enhanced steam methane reforming (SESMR)," *Int. J. Hydrogen Energy*, vol. 44, no. 2, pp. 694–706, 2019, doi: 10.1016/j.ijhydene.2018.11.002.
- [55] A. Outman *et al.*, "Obtaining of New Antioxidant and Antimicrobial Peptides Derived from Human Hemoglobin by Peptide Hydrolysis and Comparison with These Obtained by Bovine Hemoglobin," 2023, doi: 10.20944/preprints202307.
- [56] H. C. Wu, Z. Rui, and J. Y. S. Lin, "Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane," J. Memb. Sci., vol. 598, p. 117780, 2020, doi: 10.1016/j.memsci.2019.117780.
- [57] G. Bang, D. Moon, J. Kang, Y. Han, K. Kim, and C. Lee, "High-purity hydrogen production via a water-gas-shift reaction in a palladium-copper catalytic membrane reactor integrated with pressure swing adsorption," *Chem. Eng. J.*, vol. 411, no. January, p. 128473, 2021, doi: 10.1016/j.cej.2021.128473.
- [58] F. Alrashed and U. Zahid, "Comparative analysis of conventional steam methane reforming and PdAu membrane reactor for the hydrogen production," *Comput. Chem. Eng.*, vol. 154, p. 107497, 2021, doi: 10.1016/j.compchemeng.2021.107497.
- [59] M. Abbasi, M. Farniaei, M. R. Rahimpour, and A. Shariati, "Enhancement of hydrogen production and carbon dioxide capturing in a novel methane steam reformer coupled with chemical looping combustion and assisted by hydrogen perm-selective membranes," *Energy* and Fuels, vol. 27, no. 9, pp. 5359–5372, 2013, doi: 10.1021/ef400880q.
- [60] C. Joo, J. Lee, Y. Kim, H. Cho, B. Gu, and J. Kim, "A novel on-site SMR process integrated





ISSN: 2616 - 9916

with a hollow fiber membrane module for efficient blue hydrogen production: Modeling, validation, and techno-economic analysis," *Appl. Energy*, vol. 354, no. PB, p. 122227, 2024, doi: 10.1016/j.apenergy.2023.122227.

- [61] D. D. D. Pinto, J. M. Limpach, and H. K. Knuutila, "Simulation-based assessment of the potential of offshore blue hydrogen production with high CO2 capture rates with optimised heat recovery," *Gas Sci. Eng.*, vol. 121, no. August 2023, p. 205177, 2024, doi: 10.1016/j.jgsce.2023.205177.
- [62] J. R. Fernández and J. C. Abanades, "Sorption enhanced reforming of methane combined with an iron oxide chemical loop for the production of hydrogen with CO2 capture: Conceptual design and operation strategy," *Appl. Therm. Eng.*, vol. 125, pp. 811–822, 2017, doi: 10.1016/j.applthermaleng.2017.07.063.
- [63] P. Ribeirinha, M. Abdollahzadeh, M. Boaventura, and A. Mendes, "H2production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," *Appl. Energy*, vol. 188, pp. 409–419, 2017, doi: 10.1016/j.apenergy.2016.12.015.
- [64] F. Pruvost, S. Cloete, C. Arnaiz del Pozo, and A. Zaabout, "Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture," *Energy Convers. Manag.*, vol. 274, no. June, p. 116458, 2022, doi: 10.1016/j.enconman.2022.116458.
- [65] A. Di Giuliano, J. Girr, R. Massacesi, K. Gallucci, and C. Courson, "Sorption enhanced steam methane reforming by Ni–CaO materials supported on mayenite," *Int. J. Hydrogen Energy*, vol. 42, no. 19, pp. 13661–13680, 2017, doi: 10.1016/j.ijhydene.2016.11.198.
- [66] R. Hu, D. Li, H. Xue, N. Zhang, Z. Liu, and Z. Liu, "Hydrogen production by sorptionenhanced steam reforming of acetic acid over Ni/CexZr1-xO2-CaO catalysts," *Int. J. Hydrogen Energy*, vol. 42, no. 12, pp. 7786–7797, 2017, doi: 10.1016/j.ijhydene.2017.01.167.
- [67] P. D. Cobden *et al.*, "Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results," *Int. J. Greenh. Gas Control*, vol. 1, no. 2, pp. 170–179, 2007, doi: 10.1016/S1750-5836(07)00021-7.
- [68] C. S. Martavaltzi, E. P. Pampaka, E. S. Korkakaki, and A. A. Lemonidou, "Hydrogen Production via Steam Reforming of Methane with Simultaneous CO 2," vol. 33, no. 4, pp. 2589–2595, 2010, doi: 10.1021/ef9014058.
- [69] M. Z. Shahid and J. K. Kim, "Design and economic evaluation of a Design and economic evaluation of a novel amine-based CO2 capture process for SMR-based hydrogen production plants-based CO2 capture process for SMR-based hydrogen production plants," *J. Clean. Prod.*, vol. 402, no. February, p. 136704, 2023, doi: 10.1016/j.jclepro.2023.136704.
- [70] J. Lee, H. Park, S. Yun, and J. K. Kim, "Energetic and economic analysis of absorptionbased CO2 captur integrated hydrogen production processes – Retrofit perspective," J. *Clean. Prod.*, vol. 405, no. February, p. 136955, 2023, doi: 10.1016/j.jclepro.2023.136955.

# ARTICLE



#### Vol. 33, No.2. \ 2025

- [71] L. Di Felice *et al.*, "Combined sorbent and catalyst material for sorption enhanced reforming of methane under cyclic regeneration in presence of H2O and CO2," *Fuel Process. Technol.*, vol. 183, no. July 2018, pp. 35–47, 2019, doi: 10.1016/j.fuproc.2018.10.012.
- [72] H. Zuo *et al.*, "Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept," *Chem. Eng. J.*, vol. 477, no. June, p. 146870, 2023, doi: 10.1016/j.cej.2023.146870.
- [73] B. Arstad, J. Prostak, and R. Blom, "Continuous hydrogen production by sorption enhanced steam methane reforming (SE-SMR) in a circulating fluidized bed reactor: Sorbent to catalyst ratio dependencies," *Chem. Eng. J.*, vol. 189–190, no. 2010, pp. 413–421, 2012, doi: 10.1016/j.cej.2012.02.057.
- [74] K. Johnsen, H. J. Ryu, J. R. Grace, and C. J. Lim, "Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor," *Chem. Eng. Sci.*, vol. 61, no. 4, pp. 1195–1202, 2006, doi: 10.1016/j.ces.2005.08.022.
- [75] A. Di Giuliano *et al.*, "Development of Ni- and CaO-based mono- and bi-functional catalyst and sorbent materials for Sorption Enhanced Steam Methane Reforming: Performance over 200 cycles and attrition tests," *Fuel Process. Technol.*, vol. 195, no. July, p. 106160, 2019, doi: 10.1016/j.fuproc.2019.106160.
- [76] J. De Castro, R. Rivera-Tinoco, and C. Bouallou, "Hydrogen production from natural gas: Auto-Thermal Reforming and CO 2 capture," *Chem. Eng. Trans.*, vol. 21, no. May 2014, pp. 163–168, 2010, doi: 10.3303/CET1021028.
- [77] I. K. Shamsudin, A. Abdullah, I. Idris, S. Gobi, and M. R. Othman, "Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon," *Fuel*, vol. 253, pp. 722–730, 2019.
- [78] P. Xu, Z. Zhou, C. Zhao, and Z. Cheng, "Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming," *Catal. Today*, vol. 259, pp. 347–353, 2016, doi: 10.1016/j.cattod.2015.05.026.
- [79] S. Z. Abbas, J. R. Fernández, A. Amieiro, M. Rastogi, J. Brandt, and V. Spallina, "Lab-scale experimental demonstration of Ca[sbnd]Cu chemical looping for hydrogen production and in-situ CO2 capture from a steel-mill," *Fuel Process. Technol.*, vol. 237, no. September, 2022, doi: 10.1016/j.fuproc.2022.107475.
- [80] G. Zang, E. J. Graham, and D. Mallapragada, "H2 production through natural gas reforming and carbon capture: A techno-economic and life cycle analysis comparison," *Int. J. Hydrogen Energy*, vol. 49, pp. 1288–1303, 2024, doi: 10.1016/j.ijhydene.2023.09.230.
- [81] M. Liu *et al.*, "Synergistic promotions between high purity H2 production and CO2 capture via sorption enhanced chemical looping reforming," *Fuel Process. Technol.*, vol. 254, no. January, p. 108042, 2024, doi: 10.1016/j.fuproc.2024.108042.
- [82] M. A. Soria, S. Tosti, A. Mendes, and L. M. Madeira, "Enhancing the low temperature water – gas shift reaction through a hybrid sorption-enhanced membrane reactor for highpurity hydrogen production," *Fuel*, vol. 159, pp. 854–863, 2015, doi: 10.1016/j.fuel.2015.07.035.

# ARTICLE



Vol. 33, No.2. \ 2025

- [83] H. Lin *et al.*, "CO2-selective membranes for hydrogen production and CO2 capture Part I: Membrane development," *J. Memb. Sci.*, vol. 457, pp. 149–161, 2014, doi: 10.1016/j.memsci.2014.01.020.
- [84] D. Kim et al., Design of a novel hybrid process for membrane assisted clean hydrogen production with CO2 capture through liquefaction, vol. 49. Elsevier Masson SAS, 2022. doi: 10.1016/B978-0-323-85159-6.50021-X.
- [85] C. H. Kim, J. Y. Han, H. Lim, K. Y. Lee, and S. K. Ryi, "Methane steam reforming using a membrane reactor equipped with a Pd-based composite membrane for effective hydrogen production," *Int. J. Hydrogen Energy*, vol. 43, no. 11, pp. 5863–5872, 2018, doi: 10.1016/j.ijhydene.2017.10.054.
- [86] C. S. Patil, M. V. S. Annaland, and J. A. M. Kuipers, "Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation," vol. 62, pp. 2989–3007, 2007, doi: 10.1016/j.ces.2007.02.022.
- [87] Y. Nalbant, C. O. Colpan, and A. Iulianelli, "Energy and exergy analyses of an integrated membrane reactor and CO 2 capture system to generate decarbonized hydrogen," *Energy Convers. Manag.*, vol. 272, no. October, p. 116367, 2022, doi: 10.1016/j.enconman.2022.116367.
- [88] Z. Chen *et al.*, "Sorbent-enhanced / membrane-assisted steam-methane reforming," vol. 63, pp. 170–182, 2008, doi: 10.1016/j.ces.2007.09.031.
- [89] B. Gu, "Mathematical Modelling of Membrane CO2 Capture for Blue Hydrogen Production," *IFAC-PapersOnLine*, vol. 55, no. 7, pp. 304–309, 2022.
- [90] T. A. Peters *et al.*, "Palladium (Pd) Membranes as Key Enabling Technology for Precombustion CO2 Capture and Hydrogen Production," *Energy Procedia*, vol. 114, no. 1876, pp. 37–45, 2017, doi: 10.1016/j.egypro.2017.03.1144.
- [91] B. Najmi and M. Soltanieh, "Process integration of membrane reactor for steam methane reforming for hydrogen separation with CO2 capture in power production by natural gas combined cycle," *Energy Procedia*, vol. 1, no. 1, pp. 279–286, 2009, doi: 10.1016/j.egypro.2009.01.039.





## مراجعة: تقنيات التقاط ثاني أكسيد الكربون في إنتاج الهيدروجين من الإصلاح البخاري للغاز الطبيعي باستخدام أنظمة الأغشية

الاء هارف ذيبان تحسين على الحطاب

قسم الهندسة الكيميائية، كلية الهندسة، جامعة بابل، بابل، العراق

alhattab.t@uobabylon.edu.iq alaa.theban.engh428@student.uobabylon.edu.iq

الخلاصة

يُعدُ الغاز الطبيعي من أبرز المصادر المستخدمة في إنتاج الهيدروجين. ويشكل إنتاج الهيدروجين من الميثان عبر الإصلاح البخاري باستخدام مفاعل غشائي مع التقاط ثاني أكسيد الكربون طريقة متقدمة تجمع بين إنتاج الهيدروجين وتنقيته، إلى جانب الحصول على وقود نظيف. يمثل الإصلاح البخاري للميثان حوالي 50% من إجمالي إنتاج الهيدروجين عالميًا. يمكن تصنيف تقنيات التقاط ثاني أكسيد الكربون إلى ثلاث فئات رئيسية: التقاط ما بعد الاحتراق، والتقاط ما قبل الاحتراق والتقاط احتراق الأكسجين. وتشمل طرق التقاط الكربون الامتزاز، والامتصاص، والأغشية، والفصل بالتبريد أو عند درجات الحرارة المنخفضة، والاحتراق الكيميائي الدائري. تُستخدم بعض البرمجيات المتقدمة لحل المعادلات الحاكمة لمفاعل الأغشية المعزز بالممتز، والتي تشمل معادلات الاستمرارية، وانتقال الكتلة، وانتقال الحرارة. تستعرض هذه المراجعة تقنيات التقاط ثاني أكسيد الكربون في إنتاج الهيدروجين، مع التركيز على أنواع المدخلات الهيدروكربونية، وطرق الإنتاج، وأنواع المحفزات، ومواد التقاط ثاني أكسيد الكربون، وظروف المنتغل، كما تلخص أبرز الاراسات حول تقنيات التقاط ثاني المعزز بالممتز، والتي تشمل معادلات الاستمرارية، وانتقال الكتلة، وانتقال الحرارة. تستعرض هذه المراجعة تقنيات التقاط ثاني أكسيد الكربون في إنتاج الهيدروجين، مع التركيز على أنواع المدخلات الهيدروكربونية، وطرق الإنتاج، وأنواع المحفزات، ومواد التقاط ثاني أكسيد الكربون، وظروف التشغيل. كما تلخص أبرز الدراسات حول تقنيات التقاط ثاني التقاط ثاني أكسيد التربون، وظروف التشغيل. كما تلخص أبرز الدراسات حول تقنيات التقاط ثاني أكسيد الكربون في إنتاج الهيدروجين من الإصلاح البخاري للغاز الطبيعي باستخدام أنظمة الأغشية.

الكلمات الدالة:-إنتاج الهيدروجين، التقاط ثاني أكسيد الكربون، مفاعل غشائي، الإصلاح البخاري للغاز الطبيعي، الامتزاز.

محلات حامعه بابل