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Abstract    

   A module M  is called closed weak g-supplemented if for any closed submodule N of 

M, there is a submodule K of M such that         and         (i.e. K is a weak 

g-supplement of N in M). In this work many various properties of closed weak g-

supplemented modules are investigated. We will prove a module M is closed weak g-

supplemented if and only if    ⁄  is closed weak g-supplemented for any closed 

submodule X of M. So, any direct summand of closed weak g-supplemented module is 

also closed weak g-supplemented. Every nonsingular homomorphic image of a closed 

weak g-supplemented module is closed weak g-supplemented. We define and study also 

modules, in which every cofinite closed submodule of it have weak g-supplements, 

namely, cofinitely closed weak g-supplemented.       

Mathematics Subject Classification (2010): 16D10, 16D60, 16D80, 16D99.    

.    

1.  Introduction 

Throughout this article, all rings are associative with identity and all modules are 

unitary left R-modules, unless otherwise stated. A submodule N of a module M is called 

essential if       for any nonzero submodule K of M. If       for any proper 

submodule K of M, then N is called a small submodule. A closed submodule N of M, is a 

submodule which has no proper essential extensions inside M [1]. A module M is called 

supplemented (weak suppl-emented) if for any submodule N of M, there is a submodule 

K of M such that        and      is small in N (resp. in M), see [2], [3]. Recall 

from [4] that a module M is called closed weak supplemented if for any closed submodule 

N of M, there is a submodule K of M such that        and      is small in M. A 

submodule N of M is said to be g-small if for every essential submodule K of M with 

      implies     (in [5], it is called an e-small submodule of M and denoted by 

    ). Let   and V be submodules of a module M. If        and       with 

X is essential in V, implies    , or equivalently,       and     is g-small in V, 

then V is called a g-supplement of   in M. If every submodule of M has a g-supplement in 

M, then M is called a g-supplemented module [6]. If        and      is g-small in 

M, then V is called a weak g-supplement of   in M.        
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If every submodule of M has a weak  g-supplement in M, then M is called a weakly g-

supplemented module [7]. Recall that a module M is said to be extending (or CS-module) 

if for any submodule N of M, there exists a decomposition         such that N is 

essential in   , or equivalently, a module M is extending if and only if every closed 

submodule of M is a direct summand [8]. In this article, we replace the condition of 

extending modules by the condition that the closed submodule has a weak g-

supplemented, such as modules, called closed weak g-supplemented modules, which is a 

proper generalization for both extending and weakly g-supplemented modules. In 

Section 2, we define and investigate the class of closed weak g-supplemented modules, 

and give various properties of them. In Section 3, we stated some conditions that make 

homomrphic image of a closed weak g-supplemented module is also closed weak g-

supplemented. For an integral domain R, we prove that a torsion free homomorphic 

image R-module of a closed weak g-supplemented module is closed weak g-

supplemented. A submodule N of a module M is called cofinite if   ⁄  is finitely 

generated. [7], have defined cofinitely weak g-supplemented modules as a proper 

generalization of weakly g-supplemented. A module M is said to be cofinitely weak g-

supplemented if every cofinite submodule of M has a weak g-supplement in M. In Section 

4, we introduce the notion of cofinitely closed weak g-supplemented modules  as a proper 

generalization of closed weak g-supplemented and cofinitely weak g-supplemented 

modules. If every cofinite and closed submodule of M has (is) a weak g-supplement in M, 

then M is called a cofinitely closed weak g-supplemented module. We provide some 

properties of these modules. For a left R-module M, the notations    ,    , 

    ,     ,       or       mean that N is a subset, a submodule, an essential 

submodule, a g-small submodule, a closed submodule, or cofinite and closed submodule 

of M, respectively'. We will denotes    ( )  *   |       for all   (  )   +.  

First, we will state some well-known properties of g-small submodules in [5] which 

needed in this work.  

 

Lemma 1.1. Let     and    (for      ) be submodules of a module M. Then the 

following conditions are hold. 

( )  If      , then       and    ⁄     ⁄ .  

(  ) ∑   
 
        if and only if         for       . 

(   ) If  ̀ is another module and let      ̀ be a homomorphism, then  ( )    ̀ 

where     . In particular, if          then      .  

(  ) Assume that       and      , where        . Then               if 

and only if          for       .  
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2.  Closed Weak G-supplemented Modules  

Recall [7] that a module M is called weakly g-supplemented if for every submodule N 

of M, there is a submodule K of M such that        and        . In this section, 

we generalized the concept of weak g-supplemented modules to the notion of closed weak 

g-supplemented modules. Several properties of this class has been discussed.  

 

Definition 2.1. A module M is said to be closed weak g-supplemented if for all closed 

submodule N of M, there is a submodule K of M such that       and        

(i.e. K is a weak    g-supplement of N in M).  

  

     Clearly, all of simple, extending, uniform and semisimple are closed weak g-

supplemented modules. Also, we see that closed weak supplemented modules are closed 

weak g-supplemented, and weakly g-supplemented modules are closed weak g-

supplemented, but the converse need not be true, in general. Before, we need the 

following Proposition which appeared in [9].  
   

Proposition 2.2. Let M be an indecomposable R-module. Then a proper submodule N 

of M is small if and only if it is g-small.  

Now we have the following example.  
 

Example 2.3. Assume      , and       . Since M is a uniform R-module, so 

it is closed weak g-supplemented. On the other hand,      is the only submodule of M 

such that      , but         is not g-small in Z as Z-module, by apply 

Proposition 2.2 (in fact,    is not small in Z, and Z is an indecomposable as Z-module), 

this mean      does not have  a weak g-supplement in Z, hence Z as Z-module is not 

weakly g-supplemented. 
 

     Recall that a module M is called Hollow (e-Hollow) if every proper submodule of M is 

small (resp. g-small) [Hadi & Aidi, 2015]. It is clear that Hollow modules are e-Hollow, 

and hence it is weakly g-supplemented. So we have the following implications : 

 

                 

 

              

 

Proposition 2.4. Let M be an indecomposable R-module. Then M is closed weak 

supplemented if and only if M is closed weak g-supplemented.  

Proof. It follows directly from Proposition 2.2. 

     For an R-module M, the set   ( )  *   |    ( )    + is called a singular 

submodule.  A module M is called singular if  ( )   , and it is called nonsingular if 

e-Hollow 

Hollow 

Weak supplemented 

Weakly G-supplemented 

Closed Weak supplemented 

Closed Weak G-supplemented 

Closed Weak G-supplemented 
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 ( )    [1]. A submodule N of M is said to be   -small (briefly     ), if         

with   ⁄  singular, implies that    , where     [10]. Notice, every  -small 

submodule is g-small (in fact,   ⁄  is singular, whenever     ), but not conversely. 

Recall that a module M is called closed weak  -supplemented if for each     , there is 

a submodule K of M such that       and         [11].  

 

Proposition 2.5. Let M be a nonsingular R-module. Then a proper submodule N of M 

is  -small if and only if it is g-small.  

Proof. See [12].                                                                                      
 

     [5], proved that if a module is projective, then  -small and  g-small submodules are 

equivalent. So, we have the following result.  

 

Proposition 2.6. If M is a nonsingular (or projective) R-module. Then M is closed weak 

 -supplemented if and only if M is closed weak g-supplemented. 

The following Lemma is appeared in [7]. 

 

Lemma 2.7. Let M be an R-module,       and V  be a weak g-supplement of   in 

M. Then (   )  ⁄  is a weak g-supplement of    ⁄   in    ⁄ .    

 

Proposition 2.8. Let M be a module and     . If M is a closed weak g-supplemented 

module, then the factor module   ⁄  is closed weak g-supplemented.  

Proof. Assume that    ⁄  is a closed submodule of    ⁄ , so   is closed in M (because  

    ). Since M is a closed weak g-supplemented module, then there is a weak g-

supplement V of   in M, hence   ⁄  has a weak g-supplement (   )  ⁄  in   ⁄  by 

previous Lemma. Therefore   ⁄  is a closed weak g-supplemented module.                                                   

 

Corollary 2.9. Let M be a module. Then M is closed weak g-supplemented if and only if  

  ⁄  is closed weak g-supplemented, for any closed submodule X of M.  

 

Corollary 2.10. Let M be a closed weak g-supplemented module. Then any direct 

summand of M is closed weak g-supplemented.  

Proof. Let N be a direct summand of M (i.e.        for some    ), then     . 

Since M is a closed weak g-supplemented module, then by Proposition 2.8,   ⁄  is also 

closed weak    g-supplemented. But    ⁄  (    )    ⁄ . Hence N is closed weak g-

supplemented.          
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Lemma 2.11. Let   and   be submodules of a module M with   is a weak g-supplement 

of     in M, and   is a weak g-supplement of (   )    in  . Then   has a weak g-

supplement      in M.     

Proof. Since H is a weak g-supplement of      in M, and G is a weak g-supplement of 

(   )    in N, then we get   (   )   , (   )      ,   ((   )   )  

  and ((   )   )    (   )       (also in M). Thus, (   )    

((   )   )  ((   )   )  ((   )   )  ((   )   )     by Lemma 1.1(  ), 

and also     (   )   ((   )   )    (   )  (   )   . Hence      is 

a weak g-supplement  

of  L in M.                                                                                                                                         

  

Proposition 2.12. Let         with    is a closed weak g-supplemented module for  

     . Suppose that    (    )  
    and     (   )  

   , where K is a weak g-

supplement of    (    ) in   , and L is any closed submodule of M with (   ). Then 

M is a closed weak  g-supplemented module.  

Proof. Assume that L is any closed submodule of         . Trivially      

(    ) has a weak g-supplement 0 in M. By hypothesis,    (    )  
    and    is 

closed weak   g-supplemented, then there is a submodule K of     such that       

(   (    )) and   (   (    ))    (    )     . By Lemma 2.11, we get  

      is a weak  g-supplement of      in M. Since    (   )  
    and    is a 

closed weak g-supplemented module, hence    (   ) has a weak g-supplement P of  

  . Again by Lemma 2.11,     is a weak g-supplement of L in M. Therefore M is a 

closed weak g-supplemented module.                                                                                                        

 

Proposition 2.13. Let         be a module such that    is a closed weak g-

supplemented module and    is any module. Suppose that       
    for any closed 

submodule N of M. Then M is a closed weak g-supplemented module if and only if for 

any closed submodule N of M with      has a weak g-supplement.   

Proof.  ) Clear.  

 ) Let N be a closed submodule of M. If     , so by a condition, N has a weak g-

supplement. Now, if      then        and it has a weak g-supplement     in 

M. Since    is        closed weak g-supplemented and      
   , then      has a 

weak g-supplement   in   . By applying Lemma 2.11, N has a weak g-supplement  

      in M. From two cases, M is     a closed weak g-supplemented module.                                                                                          

 

     Following [1], a submodule N of a module M is called   -closed if   ⁄  is non-singular. 

Goodearl  K.R. in Proposition 2.2.4, proved that every  -closed submodule of a module is 
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closed. The converse holds, whenever a module is nonsingular. However we have the 

following Corollary.   

Corollary 2.14. Let         be a nonsingular module such that    is a closed 

weak g-supplemented module and    is any module. Then M is a closed weak g-

supplemented module if and only if for any closed submodule N of M  with       has a 

weak g-supplement. 

  Proof. Let M be a nonsingular module. If     , then N is a  -closed submodule of M 

(since M is nonsingular); that is 
 

 
 is nonsingular. Since  

    

 
 
 

 
  then  

    

 
 is so a 

nonsingular module. But we have  
    

 
 

  

    
, so  

  

    
 is nonsingular, this mean      

is a  -closed submodule of   , hence      
    for any closed submodule N of M. 

Thus the result is obtained by Proposition 2.13.                                                                      

Proposition 2.15. Let M be a module has the property         for all submodules 

    of M. If L is a closed weak g-supplemented module, then N has a weak g-supplement 

inside L where      .  

Proof. Assume that      . By assumption,        but       in M, so we 

have       . Since L is a closed weak g-supplemented module, then there is a weak g-

supplement K of     in L, i.e.   (   )    and   (   )        . Thus 

     , and hence            . Thus        and         where   is 

a submodule of L. Therefore   has  a weak g-supplement K in L.                                                                                                  

Corollary 2.16. If M is a semisimple module and let     be submodules of M, then 

there is   a weak g-supplement of N inside L where       .  

Theorem 2.17. Let         be an R-module such that   (  )    (  )   . Then M 

is closed weak g-supplemented if and only if each   ,   *   +, is closed weak g-

supplemented.  

Proof. The necessity follows directly from Corollary 2.10. Conversely, let    and    are 

both closed weak g-supplemented R-modules. If     , and since   (  )    (  )   , 

then by [12]       where       and     . By transitivity for closed submodules, 

we get        and       . Since    is a closed weak g-supplemented module, for 

  *   +, we have         ,         ,         and           for some 

      and       . Put         , so    . Thus     (     )  (   )  

(    ) (    )         , and     (     )  (   )  (    ) (    ) 

          by Lemma 1.1 (  ), this mean K is a weak g-supplement of N in M. 

Hence          is a closed weak g-supplemented R-module.                                 

 

     A submodule N of a module M is called distributive if    (   )  (   )  (  

 ) for all      . A module M is called distributive if for all its submodules are 

distributive [13]. Recall that an R-module M is called duo if for any submodule N of M, 

and for all      ( ),  ( )    (i.e. N is fully invariant) [18]. We know that every duo 

module is distributive. However, we have the following Theorem.  
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Theorem 2.18. Let         be a distributive R-module. Then, each   ,   *   +, is 

closed weak g-supplemented if and only if M is closed weak g-supplemented.  

Proof. Assume that     and    are closed weak g-supplemented R-modules, and let  

    .  We claim that      
    for each   *   + as follows: let         in   , 

and since M is   a distributive R-module, then we have         (     )  

(    ) (    )      (    ) in M, but      this implies    (    ) (  

  )    (    ), and so       , thus      
   . Similarly,      

   . 

Since    and     are closed weak   g-supplemented, then there is a submodule    of    

such that       (    ) and    (    )           for each   *   +. Put 

       . So, we get          (   (    )) (   (    ))  (     )  

((    ) (    ))  (     )  (  (    

  )  (     )  (   )  (     )       , since M is a distributive module. 

Also,     (     )     (    ) ((    )           (because M is 

distributive, and by Lemma 1.1 (  )) this mean   is a weak g-supplement of A in  , and 

hence M is closed weak g-supplemented. The converse, follows directly by Corollary 2.10.                            

Corollary 2.19. Let       
    be a distributive (or duo) R-module. Then M is closed 

weak g-supplemented if and only if for all    ,    *       +, is closed weak g-

supplemented 

 

     A ring R is said to be closed weak g-supplemented if, R is a left closed weak g-

supplemented as R-module. 

 

     Next, we will discuss the relation between closed weak g-supplemented rings and 

modules. In the following two results, R is a commutative ring. 

 

Lemma 2.20. Let M be a finitely generated faithful multiplication R-module. Then the 

following assertions are hold.  

( )          in M  if and only if          in R,  where          for    *   +.  

(  )       if and only if      ,  where     .  

Proof. ( ) Assume         in M , to prove        in R,  where          for    *   +. 

Let       such that        , then               (    )       , but 

       and        implies that      , so      ( )   , and hence     . So 

       in R. Conversely, let       such that        , so there is        in R with 

    . Thus, we have (    )                implies        ( )   , but 

       and      , hence     ,        . Therefore         in M.  

  

(  ) Suppose that     . If        with      , then      (   )     

       , where        by ( ). As     , we get           implies that  
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   , and so      . Conversely, assume      , where      . So by ( ), there is 

     such that     . Thus, we have (   )                , then 

     , but      and      , so       implies           . Therefore 

    .                                                                      

 

Theorem 2.21. Let M be a finitely generated faithful multiplication R-module. Then M 

is closed weak g-supplemented if and only if R is closed weak g-supplemented. 

Proof. Assume that M is a closed weak g-supplemented R-module, and let     . It is 

easy to see that           , so there is        where    , such that  

      and        , as M is closed weak g-supplemented. Hence (   )  

              , so      , also (   )            , so by 

Lemma 2.20 (  ),       , hence   has a weak g-supplement J of R, and so R is closed 

weak g-supplemented. Conversely, let          where    , so it is easy to see that 

    . There is     such that       and       , as R is closed weak g-

supplemented. It follows,      (   )            , and by Lemma 2.20 

(  ),      (   )       , that is     is a weak g-supplement of  N in M. Hence 

M is a closed weak g-supplemented R-module.                

  

    Next, we shall discuss the behavior of closed weak g-supplemented modules under 

localization. Firstly, we prove the following Lemma. 

 

Lemma 2.22. Let M be an R-module and S be a multiplicative closed subset of R, 

provided           iff       for each       . Then the following assertions hold. 

   

( )       in R-module M  if and only if         
     in      -module      .  

(  )      in R-module M  if and only if         
     in      -module      .   

(   ) K is a weak g-supplement of N in R-module M if and only if       is a weak g-

supplement of       in      -module      .  

 

Proof. ( ) Assume that        as R-module. If            such that      

        ( ), where    , then    (   )     ( ), so by assumption we have 

      implies    , as      and    . Thus         ( ), and hence 

       
         as     -module. Conversely, let       where    , then 

             (   )     ( ), where          , this implies         ( ), as  

       
   , so by assumption    . Therefore        as R-module. 

 

(  ) Let        . Suppose that                 where        
   . So, 

        (   ) implies that        by assumption. Since        
   , then  

    , by ( ), that is, we have       and     , so     (since     ), and 

hence          . Conversely, assume that       where     . Thus      
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        (   )        and         
     by ( ), so           , since 

       
   . By assumption,     and hence     .  

 

(   ) Assume K is a weak g-supplement of N in R-module M, then       and 

      , so              (   )       and              (   )    

      by (  ), this means       is a weak g-supplement of        in     -module     . 

The converse, by      a similar way.                                                                                 
    

Lemma 2.23. Let M be an R-module,     and let S be a multiplicative closed subset 

of R. Then N is closed in M as R-module if and only if        is closed in      as     -

module, provided            iff       for each       .  

Proof. See [14] 
 

 

The next Theorem is a consequence of the previous two Lemma's. 

 

Theorem 2.24. Let M be an R-module and let S be a multiplicative closed subset of R. 

Then M is a closed weak g-supplemented as R-module if and only if        is a closed 

weak g-supplemented  as      -module, provided             iff       for each  

     .  

 

Corollary 2.25. Let M be an R-module. For each maximal ideal P of R, M is a closed 

weak  g-supplemented R-module if and only if     is a closed weak g-supplemented   -

module.  

 

3.  The Homomorphic Images  
 

In this section, we will consider the conditions for which the homomorphic images of 

closed weak g-supplemented modules are also closed weak g-supplemented. We know 

that any image of a weakly g-supplemented module is weakly g-supplemented, see 

[Nebiyev & Okten, 2017, Cor.5]. However, we start with the following definition.    
 

Definition 3.1. [14] Let M and N be R-modules. M is called relatively c-Rickart to N if 

for any        (   ),      is closed in M.  

 

Corollary 3.2. Let       be an R-homomorphism. If M is closed weak g-

supplemented and relatively c-Rickart to N, then     is closed weak g-supplemented. 

Proof. Assume that       (   ). Since M is relatively c-Rickart to N, then 

       . So by Proposition 2.8,      ⁄  is closed weak g-supplemented. But we have 

     ⁄     , therefore     is a closed weak g-supplemented module.                                          
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     Let M be a module over an integral domain R. If the set  ( )  *   |      for 

some  (  )   +  is equal zero, then M is called torsion free [15]. 
 

Proposition 3.3. Let       be an R-epimorphism with N is a torsion free module 

over an integral domain R. If M is a closed weak g-supplemented R-module, so is N.  

Proof. Assume M is a closed weak g-supplemented R-module, and     . Since N is 

torsion free, then by [19] Lemma 3.1, there is a submodule H of M such that      

     and        ⁄ . Since M is closed weak g-supplemented and     , then H 

has a weak g-supplement L of M, and so (      )     ⁄  is a weak g-supplement of 

       ⁄  in        ⁄ , by Lemma 2.7. Therefore N is closed weak g-

supplemented.                                 

                                 

Lemma 3.4. Let       be an R-homomorphism, and     . If N is a nonsingular 

module, then       ( ) is a closed submodule of M.  

Proof. See [4].                                                                                           

Theorem 3.5. Any nonsingular homomorphic image of a closed weak g-supplemented 

module is also closed weak g-supplemented.  

Proof. Let M be a closed weak g-supplemented module,       be an R-epimorphism 

with       is a nonsingular module. Let     , then by previous Lemma,   

   ( )    , so there is a submodule K of M such that       and       , as M 

is a closed weak g-supplemented module. Thus, we have    ( )   ( )   ( )  

 ( )   . Since         ( )   , then  (   )   ( )   ( )   ( )      , by 

Lemma 1.1(   ). So L has  a weak g-supplement  ( ) in N, and hence N is a closed weak 

g-supplemented module.        

 

     In above theorem, the condition of nonsingularity of  N is not necessary, as example: 

we know that Z is a closed weak g-supplemented Z-module, and let        be a natural 

map, for any prime p. Since    is a simple Z-module, so it is closed weak g-supplemented. 

Note that    is   a singular Z-module, for any prime p.                                                  

 

Corollary 3.6. A nonsingular factor module of a closed weak g-supplemented module is 

also closed weak g-supplemented.  
 

     Let R be a ring, it is well known that R is left nonsingular if and only if all left 

projective  R-modules are nonsingular. However, we have the following Corollary.  

 

Corollary 3.7. Let R be a left nonsingular ring. Then the following statements are 

equivalent. 
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( ) Every projective left R-module is closed weak g-supplemented.  

(  ) Every nonsingular left R-module is closed weak g-supplemented.  

Proof. Assume ( ), let M be a left nonsingular R-module, so M is a homomorphic image 

of a free R-module F, then F is projective, and hence F is a left closed weak g-

supplemented R-module, by ( ). This mean M is a nonsingular homomorphic image of a 

closed weak g-supplemented module F, so M is also closed weak g-supplemented  by 

Theorem 3.5. Conversely, is clear.  

  Corollary 3.8. Let R be a left nonsingular ring. Then the following statements are 

equivalent. 

( ) R is a left closed weak g-supplemented ring.  

(  ) Every left nonsingular cyclic R-module is closed weak g-supplemented.  

(   ) Every principal left ideal of R is closed weak g-supplemented.  

Proof. ( )  (  ) Let      be a left nonsingular R-module, where  (  )   . 

Consider an epimorphism         which defined by   ( )      for all     . So, we 

have      is a nonsingular homomorphic image of R which is a left closed weak g-

supplemented R-module, hence M is closed weak g-supplemented, by Theorem 3.5. 

(  )  (   ) Let      be a principal left ideal of R, where  (  )   . Since R is a left 

non-singular ring (by assumption), then I is so nonsingular; this means I is a nonsingular 

cyclic          R-module, so by (  ), I  is closed weak g-supplemented.   

 

(   )  ( ) Clearly, R is generated by identity 1 (i.e. R is a principal ideal of itself), so by 

(   ), R is a left closed weak g-supplemented ring.                                                                                       

 

     Let M be a module. In [5], define the set     ( )  ⋂*    |    is maximal in 

 +  ∑{   |     }. However, we give a condition under which the concepts 

extending and closed weak g-supplemented modules are coincide.    

 

Proposition 3.9. Let M be an R-module such that     ( )   . Then M is extending if 

and only if M is closed weak g-supplemented.  

Proof. Assume that M is a closed weak g-supplemented module. Let L be a closed 

submodule of M, so L has a weak g-supplement K of M (i.e.        and    

     ), thus         ( )   , this mean      , so L is a direct summand of 

M, and hence M is extending. The converse, is clear.                                                                                                                       

Corollary 3.10. Let M be an R-module such that  
 

    ( )
  is nonsingular. If M is a closed 

weak  g-supplemented module, then  
 

    ( )
  is extending.   
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Proof. Suppose M is a closed weak g-supplemented module. By a natural mapping 

  
 

    ( )
, we have  

 

    ( )
 is a nonsingular homomorphic image of M, so by Theorem 

3.5, 
 

    ( )
  is so closed weak g-supplemented. But     (

 

    ( )
)      ( )    

    ( )
 , 

hence 
 

    ( )
 is extending, by Proposition 3.9.                                                          ❑ 

Theorem 3.11. Let R be a left nonsingular ring with     ( )    for all left R-modules 

M. Then the following statements are equivalent. 

( ) Every projective left R-module M is closed weak g-supplemented.  

(  ) Every nonsingular left R-module M is closed weak g-supplemented.  

(   ) Every nonsingular left R-module M is extending. 

(  ) Every nonsingular left R-module M is projective.  

Proof. ( )  (  ) It follows by Corollary 3.7, (  )  (   ) it follows by Proposition 3.9.   

( )  (  ) Let M be a nonsingular R-module, so there is a free (it is projective) R-module 

F such that     ⁄  for some submodule L of  F. Since M is nonsingular, then   ⁄  is so 

nonsingular (i.e. L is a  -closed submodule of  F), hence L is closed in F. On the other 

hand, F is a closed weak g-supplemented R-module, by ( ). By assumption     ( )    

implies F is extending, by Proposition 3.9. Hence L is a direct summand of F (i.e. 

      for some    ). Thus     ⁄   , this mean M isomorphic to a direct 

summand of a free R-module F, therefore M is projective, by [16]. 

(  )  (  ) Let M be a nonsingular R-module, and     .  By [1],   N is  -closed in M; 

that is   ⁄  is nonsingular, so   ⁄  is projective by (  ). Consider the natural 

epimorphism       ⁄ . Since   ⁄  is projective, then   splits (i.e.        is a 

direct summand of M), hence M is extending. Therefore M is a closed weak g-

supplemented R-module.                                                                            

        

4.  Cofinitely Closed Weak G-supplemented Modules  

 

A module M is called a cofinitely weak supplemented (g-supplemented) module if 

for every cofinite submodule of M has (is) a weak supplement (resp. weak g-supplement), 

see [17] , [7]. A submodule N of a module M is said to be cofinite if the factor module 

  ⁄  is finitely generated. In this section we define and study a special type of cofinitely 

weak g-supplemented and closed weak g-supplemented modules, namely, cofinitely 

closed weak g-supplemented modules as follows :  

Definition 4.1. Let M be an R-module. Then M is called cofinitely closed weak g-

supplemented  if every cofinite closed submodule N of M has (is) a weak g-supplement ( 

i.e. for each       ,        and          for some     ).  
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So, we clearly have the following implications for modules :  

 

 

 

 

  

 

 

 

 

Proposition 4.2. Let M be a finitely generated module. If M a cofinitely closed weak g-

supple mented module, then M is closed weak g-supplemented.  

Proof. Let     . Since M is a finitely generated module, then   ⁄  is so finitely 

generated; that is, N is a cofinite submodule of M, thus N has a weak g-supplement in M, 

as M is cofinitely closed weak g-supplemented. Therefore M is closed weak g-

supplemented.                   

Example 4.3. Suppose     as Z-module. By Example 2.3, Z is a closed weak g-

supplemented Z-module, so it is cofinitely closed weak g-supplemented. But, a cofinite 

submodule      does not have a weak g-supplement in Z, this mean that Z is not a 

cofinitely weak g-supplemented as      Z-module. 

By using Lemma 2.11, the following two results are to prove immediately. 

  Proposition 4.4. For cofinitely closed weak g-supplemented modules   ,    with 

       . Suppose    (    )  
     and     (   )  

    , where K is a weak 

g-supplement of    (    ) in   , (   ), and for any      . Hence M is a cofinitely 

closed weak  g-supple mented module.  

Proof. Analogous of proof Proposition 2.12.                                                         

Proposition 4.5. For any R-module   , let         be a module, where    is a 

cofinitely closed weak g-supplemented R-module. Suppose that       
     for any 

     . Then M is cofinitely closed weak g-supplemented if and only if for every 

      with     , N has    a weak g-supplement.     

Proof. Analogous of proof Proposition 2.13.                                                         

Corollary 4.6. For any R-module   , let         be a nonsingular R-module, 

where    is finitely generated and cofinitely closed weak g-supplemented R-module. 

Then M is a cofinitely  closed weak g-supplemented module if and only if for all        

with     , N has a weak g-supplement. 

Cofinitely Weak supplemented 

Cofinitely Weak G-supplemented 

Cofinitely Closed Weak G-supplemented 

Closed Weak G-supplemented 

↓ 

↓ 

↑ 
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Proof. Let      , where M be a nonsingular R-module. Then, we have      
    

(see Corollary 2.14). Since    is finitely generated, then       ⁄  is so finitely 

generated; that is,      is cofinite in   , hence      
     for each      . 

Hence, the result is follow, by Proposition 4.5.                                                                       

Proposition 4.7. If M is a cofinitely closed weak g-supplemented module and let 

    , then the factor module   ⁄  is cofinitely closed weak g-supplemented.   

Proof. Let    ⁄      ⁄ , so   is closed in M (because     ). Also,   ⁄  is cofinite in 

  ⁄ , implies  
  ⁄

  ⁄
 
 

 
  is finitely generated, thus      . By hypothesis,   has a weak g-

supplement V in M. Thus, the result is follow, by Lemma 2.7.                                                                            

Corollary 4.8. Any direct summand of a cofinitely closed weak g-supplemented module 

is also cofinitely closed weak g-supplemented.   

Proposition 4.9. Let M be an R-module with     ( )   . Then, every cofinite closed 

submodule is a direct summand of M if and only if M is cofinitely closed weak g-

supplemented.  

Proof.  ) Clear.  

 ) Let N be any cofinite closed submodule of M. Since M is a cofinitely closed weak g-

supple- mented module, then        and          for some    , so     

    ( )   , hence       . Thus N is a direct summand of M.                                                                     

 Corollary 4.10. Let M be a finitely generated R-module with     ( )   . Then M is 

extending if and only if M is cofinitely closed weak g-supplemented.  

Proof. Clear.                                                                                                                                     

Theorem 4.11. Any nonsingular homomorphic image of a cofinitely closed weak g-

supplemented module is cofinitely closed weak g-supplemented.  

Proof. Let       be an epimorphism such that M is cofinitely closed weak g-

supplemented,  and       is a nonsingular module. Let      , so    ( )      , 

by Lemma 3.4. On the other hand, we have  
 

    
    and 

 

    
  ( )   , thus 

 

 
 
     ⁄

     ⁄
 
 

 
 is finitely generated, hence    ( )    is a cofinite submodule of M, thus 

   ( )     . Since M is cofinitely closed weak g-supplemented, then    ( ) has a weak 

g-supplement K in M. By some steps of proof Theorem 3.5, we get  ( ) is a weak g-

supplement of L in N. Therefore N is           a cofinitely closed weak g-supplemented 

module.                                                                                                                                                                   

Corollary 4.12. Let M be an R-module such that  
 

    ( )
  is finitely generated and 

nonsingular. If M is a cofinitely closed weak  g-supplemented module, then  
 

    ( )
  is 

extending. 

Proof. It follows by Theorem 4.11 and Corollary 4.10.                                      
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Corollary 4.13. Let R be a left nonsingular ring. Then the following statements are 

equivalent. 

( ) Every projective left R-module is cofinitely closed weak g-supplemented.  

(  ) Every nonsingular left R-module is cofinitely closed weak g-supplemented.   

     Let R be a ring, if  R as R-module is cofinitely closed weak g-supplemented, then R is 

called    a cofinitely closed weak g-supplemented ring.   

Corollary 4.14. Let R be a left nonsingular ring. Then the following statements are 

equivalent. 

( ) R is a left cofinitely closed weak g-supplemented ring.  

(  ) Every left nonsingular cyclic R-module is cofinitely closed weak g-supplemented.  

(   ) Every principal left ideal of R is cofinitely closed weak g-supplemented.  

We end this work with the following Proposition.  

Proposition 4.15. Let M be a cofinitely closed weak g-supplemented R-module. If for 

every      , and V is a weak g-supplement of   in M,     has a g-supplement in V. 

Then   has     a g-supplement in M. [20] 

Proof. Let      , so there is a submodule V in M such that       and   

      (i.e. V is a weak g-supplement of   in M), as M is a cofinitely closed weak g-

supplemented R-module. By hypothesis,     has a g-supplement submodule L in V (i.e. 

    (   ) and   (   )         . Now,         (   )    

   . Hence   has a g-suppl ement L in M.     
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