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Abstract 
This paper efficiently applies the Adomian Decomposition Method and Modified Adomian 

Decomposition Method as computational techniques to locate the semi-analytical solution or semi-

approximate solution for the considered nonlinear Integro Differential Equations for the fractional-order 

(IFDE) of the Volterra-Hammerstein (V-H) type, in which the higher-multi fractional derivative is 

described in the Caputo sense.In this procedure, we radically change the IFDE’s of V-H type into some 

iterative algebraic equations and the solution of this equations is considered as the sum of the countless 

sequence of components typically converging to the solution based on the noise terms where a closed-form 

solution is not obtainable, a truncated number of terms is usually used for numerical purposes.Finally, 

examples are prepared to illustrate these considerations. 

Keywords :Integro-fractional differential equation, Caputo-fractional derivative, Adomian decomposition 
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1. Introduction 
The nonlinear integro-fractional differential equation is an important branch of 

modern mathematics. Such equations occur in various areas of applied mathematics, 

physical phenomena and bioengineering [1,2,3]. Volterra-Hammerstein is one of 

important nonlinear types, which arises in various branches of applications such as heat 

conduction in materials with memory. Moreover, these equations are encountered in 

combined conduction, convection and radiation problems [4].  

Adomian decomposition method (ADM) and Modified Adomian Decomposition 

method (MADM) have gained great interest in the user through many authors and 

researches to solve the problems in applied sciences such as the differential, fractional-

order derivatives, integral and integro-differential equations [4,5,6,7,8]. In this paper, we 

extend this technique to further deal with considering problems. 

The idea of this work is to find a semi-analytical solution or semi-approximate 

solution for multi-higher nonlinear Integro-Fractional Differential Equations (IFDE) of 

Volterra-Hammerstein (V-H) type with the variable coefficients in the general form as: 

𝐷𝑎
𝐶

𝑡
𝛼𝑛𝑢(𝑡) +∑𝑃𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑖𝑢(𝑡)

𝑛−1

𝑖=1

+ 𝑃𝑛(𝑡)𝑢(𝑡)

= 𝑓(𝑡) +∑𝜆ℓ∫ 𝒦ℓ(𝑡, 𝑠)ℋℓ (𝑠 , 𝐷𝑎
𝐶

𝑠
𝛽ℓ𝑢(𝑠)) 𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0

(1) 

For all 𝑎 ≤ 𝑡 ≤ 𝒯, with the initial conditions: 

𝑢𝑘(𝑎) = 𝑢𝑘 ∈ ℝ  , 𝑘 = 0,1,⋯ , 𝜇 − 1 ;  𝜇 = max{⌈𝛼𝑛⌉, ⌈𝛽𝑚⌉}               (2) 

 Where 𝑢(𝑡)is the unknown function which is the solution of equation (1) under initial 

condition (2), as well as, the functions 𝒦ℓ: 𝑆 → ℝ with (𝑆 = {(𝑡, 𝑠): 𝑎 ≤ 𝑠 ≤ 𝑡 ≤
𝒯} ; ℋℓ: 𝑆∗ × ℝ → ℝ (𝑆∗ = {𝑠: 𝑎 ≤ 𝑠 ≤ 𝑡 ; 𝑡 ≤ 𝒯});   ℓ = 0 , 1 ,⋯ ,𝑚 , and𝑓, 𝑃𝑖 ∈
𝐶([𝑎, 𝒯], ℝ) for all 𝑖 = 1,2,⋯ , 𝑛. In addition, 𝛼𝑖, 𝛽ℓ ∈ ℝ

+, ℓ = 1,2,⋯ ,𝑚and 𝑖 =
1,2,⋯ , 𝑛with property that 𝛼𝑛 > 𝛼𝑛−1 > ⋯ > 𝛼1 > 𝛼0 = 0, 𝛽𝑚 > 𝛽𝑚−1 > ⋯ > 𝛽1 >

𝛽0 = 0 and 𝜆ℓ(for allℓ) are the scalar parameters. Where 𝐷𝑎
𝐶

𝑡
𝜌
denotes the Caputo 

fractional derivative of order 𝜌 ∈ ℝ+. 

 The structure of this paper is organized as follows: Section 2 presents the necessary 

definitions and basic preliminaries of the fractional derivatives and fractional integration, 

section 3 the basic concept of the Adomian decomposition method, section 4 devoted to 

formulation of ADM and MADM for solving nonlinear IFDE of V-H type and our results 

illustrated throughout examples in section 5. Finally, section 6 includes a discussion for 

these methods. 

 

2. Fractional Order Derivative and Integral 

For the concept of fractional derivative and fractional integration, we present some 

basic definitions and properties about these operators which are used throughout this 

paper [1,2,3,9]. We will adopt one of the most useable fractional derivatives which are a 

modification of the Riemann-Liouville operator namely Caputo derivative and has the 

advantage of dealing properly with initial value problems in which the initial conditions 
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are given in their integer-order which is the case in most applied processes [10].For more 

details, see [1,2,3,9,10,11,12]: 

Definition 2.1:A real-valued function 𝑢 defined on a closed bounded interval[𝑎, 𝑏] be in 

the space𝐶𝜇, 𝜇 ∈ ℝ, if there exists a real number 𝑘 > 𝜇, such that 𝑢(𝑡) = (𝑡 − 𝑎)𝑘𝑢𝑐(𝑡), 

where 𝑢𝑐 ∈ 𝐶[𝑎, 𝑏] and it is said to be in the space 𝐶𝜇
𝑛 on interval [𝑎, 𝑏] where 𝑛-positive 

integer number with zero, if and only if 𝑢(𝑛) ∈ 𝐶𝜇. 

Definition 2.2: Let 𝑢 ∈ 𝐶𝜇, 𝜇 ≥ −1on a closed bounded interval[𝑎, 𝑏]and 𝛼 ∈ ℝ+. Then 

the operator 𝐽𝑎 𝑡
𝛼𝑢 is the Riemann-Liouville (R-L) fractional integral operator of order 𝛼 

of a function 𝑢, is defined as: 

𝐽𝑎 𝑡
𝛼𝑢(𝑡) = {

1

Γ(𝛼)
∫ (𝑡 − 𝜗)𝛼−1𝑢(𝜗)𝑑𝜗
𝑡

𝑎

, 𝛼 > 0

  𝑢(𝑡), 𝑤ℎ𝑒𝑛𝑣𝑒𝑟  𝛼 = 0                        

 

Hence, For all 𝛼, 𝛽 ≥ 0, 𝛾 > −1 and 𝑢 ∈ 𝐶𝜇 , 𝜇 ≥ −1 on the closed interval [𝑎, 𝑏], we 

have: 

𝐽𝑎 𝑡
𝛼 𝐽𝑎 𝑡

𝛽
𝑢(𝑡) = 𝐽𝑎 𝑡

𝛽
𝐽𝑎 𝑡
𝛼𝑢(𝑡) = 𝐽𝑎 𝑡

𝛼+𝛽
𝑢(𝑡) 

𝐽𝑎 𝑡
𝛼(𝑡 − 𝑎)𝛾 =

Г(𝛾 + 1)

Г(𝛾 + 𝛼 + 1)
(𝑡 − 𝑎)𝛾+𝛼, 𝑡 > 𝑎 

Definition 2.3: The Caputo fractional derivative operator 𝐷𝑎
𝐶

𝑡
𝛼 of order 𝛼 ∈ ℝ+ of a 

function 𝑢 ∈ 𝐶−1
𝑚  on the closed bounded interval [𝑎, 𝑏] and 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ ℤ+ is 

defined as: 

𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) =

{
 
 

 
 𝐽𝑎 𝑡

𝑚−𝛼[𝐷𝑡
𝑚𝑢(𝑡)] =

1

Γ(𝑚 − 𝛼)
∫ (𝑡 − 𝜗)𝑚−𝛼−1𝑢(𝑚)(𝜗)𝑑𝜗,
𝑡

𝑎

𝛼 > 0, 𝑡 > 𝑎

𝑢(𝑡)whenever    𝛼 = 0                                                                                   

𝑢(𝑚)(𝑡), If 𝛼 = 𝑚(∈ ℤ+)  and  𝑢 ∈  𝐶𝑚[𝑎, 𝑏]

 

 

Hence, we mention only the following properties about the derivative operator 𝐷𝑎
𝐶

𝑡
𝛼: 

 For any 𝛼 ≥ 0, 𝛼 ∉ ℕ and 𝒞 any real constant then 𝐷𝑎
𝐶

𝑡
𝛼𝒞 = 0. 

 Assume that on any closed bounded interval [𝑎, 𝑏],𝑢 ∈ 𝐶−1
𝑚  ; 𝛼 ≥ 0, 𝛼 ∉ ℕ and 𝑚 =

⌈𝛼⌉ then 𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) is continuous on [𝑎, 𝑏], and[ 𝐷𝑎

𝐶
𝑡
𝛼𝑢(𝑡)]𝑡=𝑎 = 0. 

 Let 𝛼 ≥ 0 ;𝑚 = ⌈𝛼⌉ and for 𝑢(𝑡) = (𝑡 − 𝑎)𝛾for some  𝛾 ≥ 0. Then: 

𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) = {

0                     𝑖𝑓 𝛾 ∈ {0,1,2,⋯ ,𝑚 − 1}

Γ(𝛾 + 1)

Γ(𝛾 + 1 − 𝛼)
(𝑡 − 𝑎)𝛾−𝛼

𝑖𝑓 𝛾 ∈ ℕ and 𝛾 ≥ 𝑚        
𝑜𝑟 𝛾 ∉ ℕ and 𝛾 > 𝑚 − 1

 

Also, here we need some basic lemmas [1,2,10]: 

Lemma (1):Let 𝐹 be continuous function on[𝑎, 𝑏] × [𝑎, 𝑏]. Then for 𝛼 ≥ 0 
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𝐽𝑎 𝑡
𝛼∫𝐹(𝑡, 𝑠)𝑑𝑠 = ∫ 𝐽𝑠 𝑡

𝛼

𝑡

𝑎

𝑡

𝑎

𝐹(𝑡, 𝑠)𝑑𝑠  , 𝑡 ∈ [𝑎, 𝑏] 

Lemma (2): (The Caputo derivative is left inverse of the RL-integral but not right 

inverse): 

i. If 𝑢 is continuous on closed bounded interval [𝑎, 𝑏] and 𝛼 ≥ 0 with𝑚 − 1 < 𝛼 ≤

𝑚 (∈ ℕ), then 𝐷 𝑎
𝐶

𝑡
𝛼 𝐽𝑎 𝑡

𝛼𝑢(𝑡) = 𝑢(𝑡). 
ii. Assume that 𝛼 ≥ 0 , 𝑚 = ⌈𝛼⌉ , and 𝑢 ∈ 𝐶𝑚[𝑎, 𝑏]. Then 

𝐽𝑎 𝑡
𝛼 𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡) = 𝑢(𝑡) − ∑

𝑢(𝑘)(𝑎)

𝑘!
(𝑡 − 𝑎)𝑘

𝑚−1

𝑘=0

 

Lemma (3):Let 𝛼 > 𝛽 ≥ 0 ,𝑚𝛼 − 1 < 𝛼 ≤ 𝑚𝛼and 𝑚𝛽 − 1 < 𝛽 ≤ 𝑚𝛽 (𝑚𝛼, 𝑚𝛽 ∈ ℕ) be 

such that 𝑢(𝑡) ∈ 𝐶𝑚𝛽[𝑎, 𝑏]. Then 

𝐽𝑎 𝑡
𝛼 𝐷𝑡

𝛽
𝑢(𝑡) = 𝐽𝑎 𝑡

𝛼−𝛽
𝑢(𝑡) − ∑

𝑢(𝑘)(𝑎)

Г(𝑘 + 𝛼 − 𝛽 + 1)
(𝑡 − 𝑎)𝑘+𝛼−𝛽

𝑚𝛽−1

𝑘=0

𝑎
𝐶  

 

 

3. Basic Idea of the Adomian Decomposition Method: [8,13,14,15,16] 

In the 1980t’s, George Adomian introduced a very simple and effective technique for 

solving nonlinear functional equations. His technique is known as the Adomian 

decomposition method (ADM) [13]. This method is based totally on the representation of 

the unknown function 𝑢(𝑡) in the functional equation as an infinite number of functions 

𝑢𝑟(𝑡), 𝑟 ≥ 0 described through the decomposition series: 

𝑢(𝑡) =∑ 𝑢𝑟(𝑡)
∞

𝑟=0
(3) 

Each term of the series𝑢0(𝑡), 𝑢1(𝑡), 𝑢2(𝑡),⋯ are to be determined in a recursive manner. 

However the nonlinear term𝑁(𝑢(𝑡)) in the functional equationscan be decomposed into 

an infinite series of Adomian polynomials 𝐴𝑛′𝑠which depending on 𝑢0, 𝑢1, ⋯ , 𝑢𝑛: 

𝑁(𝑢(𝑡)) =∑ 𝐴𝑛[𝑢0(𝑡), 𝑢1(𝑡),⋯ , 𝑢𝑛(𝑡)]
∞

𝑛=0
 

The uniqueness of the Adomian polynomial isn't always required at all which we are 

going to apply the Taylor expansion of 𝑁(𝑢(𝑡)) regarding the first component-part 𝑢0(𝑡) 
to induce the forms as follows: 

𝑁(𝑢(𝑡)) =∑
(𝑢(𝑡) − 𝑢0(𝑡))

𝑛

𝑛!
𝑁(𝑛)(𝑢0(𝑡))

∞

𝑛=0
 

Since from ADM 𝑢(𝑡) = ∑ 𝑢𝑟(𝑡)
∞
𝑟=0 = 𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ substituting this in 

above expansion we get 
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𝑁(𝑢(𝑡)) = 𝑁(𝑢0(𝑡)) + 𝑁
′(𝑢0(𝑡))(𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡) + ⋯ )

+
1

2!
𝑁′′(𝑢0(𝑡))(𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡) + ⋯ )2

+
1

3!
𝑁′′′(𝑢0(𝑡))(𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡) + ⋯ )3 +⋯ 

Then by expanding all terms we get: 

𝑁(𝑢(𝑡)) = 𝑁(𝑢0(𝑡)) + 𝑁
′(𝑢0(𝑡))𝑢1(𝑡) + 𝑁

′(𝑢0(𝑡))𝑢2(𝑡) + 𝑁
′(𝑢0(𝑡))𝑢3(𝑡) + ⋯

+
1

2!
𝑁′′(𝑢0(𝑡))𝑢1

2(𝑡) +
2

2!
𝑁′′(𝑢0(𝑡))𝑢1(𝑡)𝑢2(𝑡) +

1

2!
𝑁′′(𝑢0(𝑡))𝑢2

2(𝑡)

+
2

2!
𝑁′′(𝑢0(𝑡))𝑢1(𝑡)𝑢3(𝑡) + ⋯+

1

3!
𝑁′′′(𝑢0(𝑡))𝑢1

3(𝑡)

+
3

3!
𝑁′′′(𝑢0(𝑡))𝑢1

2(𝑡)𝑢2(𝑡) +
1

3!
𝑁′′′(𝑢0(𝑡))𝑢1

2(𝑡)𝑢3(𝑡)

+
1

3!
𝑁′′′(𝑢0(𝑡))𝑢1(𝑡)𝑢2(𝑡)𝑢3(𝑡) + ⋯ 

And by reordering the terms and determining the order of each term which depends on 

both the subscripts and the exponent of the 𝑢𝑛′s. The order of 𝑢𝑛
𝑚𝑢𝑘

𝑙 is 𝑚𝑛 + 𝑘𝑙, for 

example 𝑢2
3𝑢1

2 is of order (2 ∗ 3) + (1 ∗ 2) = 6 + 2 = 8 and so on. Therefore, we obtain 

𝑁(𝑢(𝑡)) = 𝑁(𝑢0(𝑡)) + 𝑁
′(𝑢0(𝑡))𝑢1(𝑡) + 𝑁

′(𝑢0(𝑡))𝑢2(𝑡) +
1

2!
𝑁′′(𝑢0(𝑡))𝑢1

2(𝑡)

+ 𝑁′(𝑢0(𝑡))𝑢3(𝑡) +
2

2!
𝑁′′(𝑢0(𝑡))𝑢1(𝑡)𝑢2(𝑡) +

1

3!
𝑁′′′(𝑢0(𝑡))𝑢1

3(𝑡)

+ 𝑁′(𝑢0(𝑡))𝑢4(𝑡) +
1

2!
𝑁′′(𝑢0(𝑡))𝑢2

2(𝑡) +
2

2!
𝑁′′(𝑢0(𝑡))𝑢1(𝑡)𝑢3(𝑡)

+
3

3!
𝑁′′′(𝑢0(𝑡))𝑢1

2(𝑡)𝑢2(𝑡) + ⋯ 

By comparing the terms from the previous formula with the terms of the assumption  
𝑁(𝑢) = ∑ 𝐴𝑛[𝑢0, 𝑢1, ⋯ , 𝑢𝑛]

∞
𝑛=0  the values of  𝐴𝑛′𝑠 can be constructed as follow: 

𝐴0 = 𝑁(𝑢0) 

𝐴1 = 𝑢1𝑁
′(𝑢0) 

𝐴2 = 𝑢2𝑁
′(𝑢0) +

1

2!
𝑢1
2𝑁′′(𝑢0) 

𝐴3 = 𝑢3𝑁
′(𝑢0) + 𝑢1𝑢2𝑁

′′(𝑢0) +
1

3!
𝑢1
3𝑁′′′(𝑢0) 

𝐴4 = 𝑢4𝑁
′(𝑢0) + (

1

2!
𝑢2
2 + 𝑢1𝑢3)𝑁

′′(𝑢0) +
1

2!
𝑢1
2𝑢2𝑁

′′′(𝑢0) +
1

4!
𝑢1
4𝑁(4)(𝑢0) 

and so on. For this case the Adomian polynomial 𝐴𝑛(𝑡) =
𝐴𝑛[𝑢0(𝑡), 𝑢1(𝑡),⋯ , 𝑢𝑛(𝑡)], 𝑛 ≥ 1,  can be listed in general formula, [14]: 

𝐴𝑛(𝑡) =∑ 𝐶𝑛
𝑘𝑁(𝑘)(𝑢0)

𝑛

𝑘=1
 

Where 
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𝐶𝑛
𝑘 = {

𝑢𝑛,                                          𝑘 = 1

1

𝑛
∑ (𝑗 + 1)𝑢𝑗+1𝐶𝑛−1−𝑗

𝑘−1
𝑛−𝑘

𝑗=0
, 𝑘 = 2,3, … , 𝑛

 

Through the use of above expansions, from the simple analytic nonlinearity 𝑁(𝑢(𝑡)), 

the Adomian polynomials 𝐴𝑛′𝑠 are arranged to have the form, [8,15]. To find the 𝐴𝑛′𝑠 by 

Adomian general formula, these polynomial will be computed as follows: 

𝐴0 = 𝑁(𝑢0) =
1

0!

𝑑0

𝑑𝜆0
[𝑁 (∑ 𝜆𝑖𝑢𝑖

0

𝑖=0
)]
𝜆=0

 

Since  

1

1!

𝑑1

𝑑𝜆1
[𝑁 (∑ 𝜆𝑖𝑢𝑖

1

𝑖=0
)]
𝜆=0

=
1

1!

𝑑1

𝑑𝜆1
[𝑁(𝜆0𝑢0 + 𝜆

1𝑢1)]𝜆=0

= [𝑁′(𝜆0𝑢0 + 𝜆
1𝑢1)]𝜆=0(𝑢1) 

So 

𝐴1 = 𝑢1𝑁
′(𝑢0) =

1

1!

𝑑1

𝑑𝜆1
[𝑁 (∑ 𝜆𝑖𝑢𝑖

1

𝑖=0
)]
𝜆=0

 

Also, Since 

1

2!

𝑑2

𝑑𝜆2
[𝑁 (∑ 𝜆𝑖𝑢𝑖

2

𝑖=0
)]
𝜆=0

=
1

2!

𝑑2

𝑑𝜆2
[𝑁(𝜆0𝑢0 + 𝜆

1𝑢1 + 𝜆
2𝑢2)]𝜆=0

=
1

2!

𝑑

𝑑𝜆
[𝑁′(𝜆0𝑢0 + 𝜆

1𝑢1 + 𝜆
2𝑢2)(𝑢1 + 2𝜆𝑢2)]𝜆=0

=
1

2!
[𝑁′(𝜆0𝑢0 + 𝜆

1𝑢1 + 𝜆
2𝑢2)(2𝑢2)

+ 𝑁′′(𝜆0𝑢0 + 𝜆
1𝑢1 + 𝜆

2𝑢2)(𝑢1 + 2𝜆𝑢2)
2]𝜆=0

= 𝑢2𝑁
′(𝑢0) +

1

2!
𝑢1
2𝑁′′(𝑢0) 

So 

𝐴2 = 𝑢2𝑁
′(𝑢0) +

1

2!
𝑢1
2𝑁′′(𝑢0) =

1

2!

𝑑2

𝑑𝜆2
[𝑁 (∑ 𝜆𝑖𝑢𝑖

2

𝑖=0
)]
𝜆=0

 

Hence, by same techniques we can obtained 𝐴𝑛′𝑠 for the nonlinearity 𝑁(𝑢(𝑡)) by 

formula: 

𝐴𝑛(𝑡) =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁 (∑ 𝜆𝑖𝑢𝑖(𝑡)

∞

𝑖=0
)]
𝜆=0

, 𝑛 = 0,1,2,⋯ 

Where 𝜆 is a parameter introduced for convenience.  

A useful device in an effort to speed up the convergence of the ADM is developed; the 

new technique relies upon in most instances the so-called “Noise Term Phenomenon” 

[13] that display a rapid convergence of the solution. The noise terms phenomenon may 

be used for all functional equations like the differential or integral equations. The noise 

terms are described as the identical terms with contrary signs that can also appear within 
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the components 𝑢0(𝑡) and 𝑢1(𝑡) and in the other components as well, Noise terms may 

also seem if the exact solution of the equation is part of the zeroth component𝑢0(𝑡). 
Verification that the remaining non-canceled terms satisfy the integral equation is 

necessary and essential. 

 

4. Analysis Technique of Method 

 In this section we try to find general solution form of multi-higher nonlinear IFDE’s of 

V-H type of the form (1) under the initial condition (2) by applying the standard 

Adomian decomposition method (SADM) and Modified Adomian decomposition method 

(MADM) as follows: 

 

4.1Applying the SADM for Solving nonlinear IFDE of V-H Type 

Our approach begins by taking 𝛼𝑛-order of R-L fractional integral 𝐽𝑎 𝑡
𝛼to both sides of 

equation (1) and using lemma (1) and lemma (2, part-ii) we obtain: 

𝑢(𝑡) = 𝐽𝑎 𝑡
𝛼𝑓(𝑡) + ∑

𝑢(𝑘)(𝑎)

𝑘!

𝑚𝛼𝑛−1

𝑘=0

(𝑡 − 𝑎)𝑘 +∑ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑖𝑢(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢(𝑡)] +∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)ℋℓ (𝑠 , 𝐷𝑎

𝐶
𝑠
𝛽ℓ𝑢(𝑠)) 𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0

(4) 

Where𝑚𝛼𝑛 = ⌈𝛼𝑛⌉, �̅�𝑖(𝑡) = −𝑃𝑖(𝑡)for all 𝑖 = 1,2,⋯ , 𝑛;�̅�ℓ(𝑡, 𝑠) = 𝐽𝑠 𝑡
𝛼𝑛𝒦ℓ(𝑡, 𝑠) for all 

𝑠 > 𝑎 and let  𝑁ℓ(𝑢(𝑠)) = ℋℓ (𝑠 , 𝐷𝑎
𝐶

𝑠
𝛽ℓ𝑢(𝑠)) , for allℓ = 0,1,⋯ ,𝑚. 

Second, according to the decomposition method, we assume series solution for the 

unknown function 𝑢(𝑡) in the form (3) and the nonlinear terms 𝑁ℓ(𝑢(𝑠)) can be 

decomposed into the infinite series of Adomian polynomials, for all ℓ = 0,1,⋯ ,𝑚given 

by: 

𝑁ℓ(𝑢(𝑠)) =∑𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]

∞

𝑟=0

             (5) 

Then substituting the decomposition series (3) and (5) into equation (4), yields we 

advised the subsequent recursive formula (6): 

𝑢0(𝑡) = 𝐽𝑎 𝑡
𝛼𝑛𝑓(𝑡) + ∑

𝑢(𝑘)(𝑎)

𝑘!

𝑚𝛼𝑛−1

𝑘=0

(𝑡 − 𝑎)𝑘

𝑢𝑟+1(𝑡) = ∑ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑖𝑢𝑟(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢𝑟(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

𝑎

,   

𝑚

ℓ=0

for all 𝑟 ≥ 0
}
 
 
 
 

 
 
 
 

                      (6) 
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Where 

𝐴0
ℓ[𝑢0] = 𝑁ℓ(𝑢0)    ;     𝐴1

ℓ[𝑢0, 𝑢1] = 𝑢1𝑁ℓ
′(𝑢0) ; 

𝐴2
ℓ[𝑢0, 𝑢1, 𝑢2] = 𝑢2𝑁ℓ

′(𝑢0) +
𝑢1
2

2!
(𝑁ℓ

′′(𝑢0)) ;  ⋯
}                            (7) 

Now, as a special case if �̅�𝑖(𝑡) = 𝐶�̅� = −𝐶𝑖(𝑖 = 1,2,⋯ , 𝑛 − 1) in which𝐶�̅�are any real 

constants then we are able to write equation (6), after making use of lemma (3) as 

follows: 

𝑢0(𝑡) = 𝐽𝑎 𝑡
𝛼𝑛𝑓(𝑡) + ∑

𝑢(𝑘)(𝑎)

𝑘!

𝑚𝛼𝑛−1

𝑘=0

(𝑡 − 𝑎)𝑘

+∑𝐶�̅� [ ∑
𝑢(𝑘)(𝑎)

Γ(𝑘 + 𝛼𝑛 − 𝛼𝑖 + 1)

𝑚𝛼𝑖
−1

𝑘=0

(𝑡 − 𝑎)𝑘+𝛼𝑛−𝛼𝑖]

𝑛−1

𝑖=1

𝑢𝑟+1(𝑡) = ∑𝐶�̅�[ 𝐽𝑎 𝑡
𝛼𝑛−𝛼𝑖𝑢𝑟(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢𝑟(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

𝑎

,   

𝑚

ℓ=0

 𝑟 ≥ 0
}
 
 
 
 
 
 

 
 
 
 
 
 

                               (8) 

In computational practice for the Adomian polynomials,𝐴𝑟
ℓ’s we truncate the series 

after 𝑟 = 𝑀 for positivefinite quantity 𝑀. Thus:  

𝐴𝑟
ℓ(𝑡) =

1

𝑟!

𝑑𝑟

𝑑𝜆𝑟
[𝑁ℓ (∑𝜆𝑖𝑢𝑖

𝑀

𝑖=0

)]

𝜆=0

, 0 ≤ 𝑟 ≤ 𝑀;  for allℓ = 0,1⋯ ,𝑚 

So, all terms of the series in equation (3) want not to be determined and so we use an 

approximation of the solution with the aid of the use of the following truncated series: 

𝑢(𝑡) ≅ �̂�𝑀(𝑡) =∑𝑢𝑟(𝑡)

𝑀

𝑟=0

, 𝑀 ∈ ℤ+                                        (9 ) 

The components 𝑢0, 𝑢1, ⋯ , 𝑢𝑀 are determined recursively by waythe above formula (6 

or 8) or the usage of the noise terms approach concept.It is important to phrase that the 

decomposition method indicates that the zeroth factor 𝑢0(𝑡)usually be defined by the 

initial conditions and the 𝛼𝑛-order of R-L fractional integral operator of the function𝑓(𝑡) 
as described above. The other components namely 𝑢1, 𝑢2, ⋯ , 𝑢𝑀are derived recurrently. 

 

4.2Applying the MADM for Solving nonlinear IFDE of V-H Type: 

As stated before, the standard Adomian decomposition method affords the solutions in 

an infinite series of components. The components 𝑢𝑗 , 𝑗 ≥ 0 are easily computed if the 

inhomogeneous term in equation (4) contains a few terms. However, if the 

inhomogeneous term contains two or more terms, the evaluation of the components 

𝑢𝑗 , 𝑗 ≥ 0 requires more work.The modified Adomian decomposition method will 
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facilitate the computational process and further accelerate the convergence of the series 

solution,the assumptions made by Adomian [13] were modified recently by Wazwaz 

[17,18]. 

The Modified Decomposition Method 1 (MADM1). It is interesting to note that the 

MADM1 depends mainly on splitting the inhomogeneous term into two parts, 

consequently,it cannot be used if the inhomogeneous term consists of the simplest one 

term. The achievement of this modification relies upon most effective at the right choice 

of assumption the two functions and this will be made via trials only. One of the 

disadvantages of this method is that a rule which can help for the proper choice of sub-

functions could not be observed yet, [8,17]. By same stages as in SADM we obtain the 

following equation:  

𝑢(𝑡) = 𝑔(𝑡) +∑ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑖𝑢(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢(𝑡)] 

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)ℋℓ (𝑠 , 𝐷𝑎
𝐶

𝑠
𝛽ℓ𝑢(𝑠)) 𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0

(10) 

Where𝑚𝛼𝑛 = ⌈𝛼𝑛⌉, �̅�𝑖(𝑡) = −𝑃𝑖(𝑡)for all 𝑖 = 1,2,⋯ , 𝑛;�̅�ℓ(𝑡, 𝑠) = 𝐽𝑠 𝑡
𝛼𝑛𝒦ℓ(𝑡, 𝑠) for all 

𝑠 > 𝑎 and let  𝑁ℓ(𝑢(𝑠)) = ℋℓ (𝑠 , 𝐷𝑎
𝐶

𝑠
𝛽ℓ𝑢(𝑠)) , for allℓ = 0,1,⋯ ,𝑚. and 

𝑔(𝑡) =  𝐽𝑎 𝑡
𝛼𝑛𝑓(𝑡) + ∑

𝑢(𝑘)(𝑎)

𝑘!

𝑚𝛼𝑛−1

𝑘=0

(𝑡 − 𝑎)𝑘                                     (11) 

According to the function 𝑔(𝑡) in equation (11) can be set as the sum of two partial 

functions, namely 𝑓1(𝑡) and 𝑓2(𝑡). In other words, we can set: 

𝑔(𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡)                                                         (12) 
To reduce the size of calculations, a slight variation becomes proposed handiest for the 

components 𝑢0(𝑡) and 𝑢1(𝑡). We identify that only the part𝑓1(𝑡)  might be assigned to 

the zeroth component 𝑢0(𝑡), by means of one part of 𝑔(𝑡), where the other  remaining 

part of 𝑔(𝑡) can be introduced to the component 𝑢1(𝑡) among different terms say 𝑓2(𝑡). 
Consequently, the MADM1 introduces the modified recurrence relation: 

𝑢0(𝑡) = 𝑓1(𝑡)

𝑢1(𝑡) =

[
 
 
 
 
 
𝑓2(𝑡) +∑ 𝐽𝑎 𝑡

𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎
𝐶

𝑡
𝛼𝑖𝑢0(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢0(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴0
ℓ[𝑢0(𝑠)]𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0 ]
 
 
 
 
 

  𝑢𝑟+1(𝑡) =

[
 
 
 
 
 

∑ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎

𝐶
𝑡
𝛼𝑖𝑢𝑟(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢𝑟(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

𝑎

,   

𝑚

ℓ=0

𝑟 ≥ 1
]
 
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

(13) 
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For the special case, IFDE’s of V-H type with constant coefficients �̅�𝑖(𝑡) = 𝐶�̅� =
−𝐶𝑖(𝑖 = 1,2,⋯ , 𝑛 − 1) in which𝐶�̅�are any real constants, after applying  the lemma (3)  

then we defined the inhomogeneous part 𝑔(𝑡) as follows: 

𝑔(𝑡) =  𝐽𝑎 𝑡
𝛼𝑛𝑓(𝑡) + ∑

𝑢(𝑘)(𝑎)

𝑘!

𝑚𝛼𝑛−1

𝑘=0

(𝑡 − 𝑎)𝑘

+∑𝐶�̅� [ ∑
𝑢(𝑘)(𝑎)

Γ(𝑘 + 𝛼𝑛 − 𝛼𝑖 + 1)

𝑚𝛼𝑖
−1

𝑘=0

(𝑡

𝑛−1

𝑖=1

− 𝑎)𝑘+𝛼𝑛−𝛼𝑖]                                       (14) 

After setting equation (14) as on the structure in equation (11), Also the suggestion 

was that only the element  𝑓1(𝑡) may be assigned to the zeroth element 𝑢0(𝑡), wherein 

the final element 𝑓2(𝑡) might be combined with the other terms given 𝑢1(𝑡): 
𝑢0(𝑡) = 𝑓1(𝑡)

𝑢1(𝑡) =

[
 
 
 
 
 
𝑓2(𝑡) +∑𝐶�̅�[ 𝐽𝑎 𝑡

𝛼𝑛−𝛼𝑖𝑢0(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢0(𝑡)]

 +∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴0
ℓ[𝑢0(𝑠)]𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0 ]
 
 
 
 
 

𝑢𝑟+1(𝑡) =

[
 
 
 
 
 

∑𝐶�̅�[ 𝐽𝑎 𝑡
𝛼𝑛−𝛼𝑖𝑢𝑟(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢𝑟(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

𝑎

,   

𝑚

ℓ=0

 𝑟 ≥ 1
]
 
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

                   (15) 

So, all terms of the series in equation (14) need now not to be determined and so we use 

an approximation of the solution by the subsequent truncated collection: 

𝑢(𝑡) ≅ �̂�𝑀(𝑡) =∑𝑢𝑟(𝑡)

𝑀

𝑟=0

, 𝑀 ∈ ℤ+                                        (16 ) 

The components 𝑢0, 𝑢1, ⋯ , 𝑢𝑀 are usually decided recursively by equations (13 or 15). 

However, the success of the MADM1 relies upon totally on the right choice of the 

functions 𝑓0(𝑡)and𝑓1(𝑡). It appears that trials are the handiest standards that may be 

applied thus far. 

More generalization for some time:The Modified Decomposition Method 2 (MADM2). 

In the second kind of modification, we update the process of dividing the inhomogeneous 

part 𝑔(𝑡), equation (11 or 14) identical, into two components with the aid of a sequence 

of infinite components. We, therefore, pointed out that sometimes it is able to be 

beneficial to specific 𝑔(𝑡) in Taylor series. In this method, MADM2, the function 𝑔(𝑡) 
can be useful to express in Taylor series for components functions 𝑓𝑖(𝑡), 𝑖 = 0,1,2…. In 

other words, we can set: 
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𝑔(𝑡) = 𝑓0(𝑡) + 𝑓1(𝑡) + ⋯+ 𝑓𝑁(𝑡) + ⋯                                                   (17) 

In view of (17), we introduce a qualitative change in the formation of the recurrence 

relation (6) to suggest a new recursive relationship expressed in the form: 

𝑢0(𝑡) = 𝑓0(𝑡)

𝑢1(𝑡) =

[
 
 
 
 
 
𝑓1(𝑡) +∑ 𝐽𝑎 𝑡

𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎
𝐶

𝑡
𝛼𝑖𝑢0(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢0(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴0
ℓ[𝑢0(𝑠)]𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0 ]
 
 
 
 
 

  𝑢𝑟+1(𝑡) =

[
 
 
 
 
 
𝑓𝑟+1(𝑡) +∑ 𝐽𝑎 𝑡

𝛼𝑛[�̅�𝑖(𝑡) 𝐷𝑎
𝐶

𝑡
𝛼𝑖𝑢𝑟(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢𝑟(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0 ]
 
 
 
 
 

, 𝑟 ≥ 1

}
 
 
 
 
 
 

 
 
 
 
 
 

(18) 

For the particular case, wherein we have the type of the constant coefficients, then we 

need to describe the inhomogeneous term g(t) as in equation (14) then we've got the to 

suggest a new recursive courting expressed in the form: 

𝑢0(𝑡) = 𝑓0(𝑡)

𝑢1(𝑡) =

[
 
 
 
 
 
𝑓1(𝑡) +∑𝐶�̅�[ 𝐽𝑎 𝑡

𝛼𝑛−𝛼𝑖𝑢0(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢0(𝑡)]

 +∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴0
ℓ[𝑢0(𝑠)]𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0 ]
 
 
 
 
 

𝑢𝑟+1(𝑡) =

[
 
 
 
 
 
𝑓𝑟+1(𝑡) +∑𝐶�̅�[ 𝐽𝑎 𝑡

𝛼𝑛−𝛼𝑖𝑢𝑟(𝑡)]

𝑛−1

𝑖=1

+ 𝐽𝑎 𝑡
𝛼𝑛[�̅�𝑛(𝑡)𝑢𝑟(𝑡)]

+∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴𝑟
ℓ[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

𝑎

𝑚

ℓ=0 ]
 
 
 
 
 

, 𝑟 ≥ 0

}
 
 
 
 
 
 

 
 
 
 
 
 

       (19) 

According to equation (18 or 19), the terms 𝑢0(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … of the solution 𝑢(𝑡) 
follow immediately, and the solution can be obtained using (16).  

It is essential to note that if inhomogeneous time period consists of a one-time period 

only, then scheme (18 or 19) reduces to relation (6 or 8) respectively. Moreover, if the 

inhomogeneous part includes two terms, then relation (18 or 19) reduces to the 

modification relation (13 or 15) respectively. 
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5. Numerical Experiments 

In this section, we shall provide some illustrative examples so that it will clarify our 

approach ADM, MADM1 and MADM2 to solve Volterra-Hammerstein nonlinear 

integro-fractional differential equations. We do not forget about the following check 

problems: 

Example (1):  We first consider the linear IFDE of V-H type for fractional orders, where 

all𝛼, 𝛽 are lie in (0,1)and𝜆 ∈ ℝ: 

𝐷𝑡
𝛼

0
𝐶 𝑢(𝑡) = 𝑓(𝑡) + 𝜆∫ 𝑠𝑡2 𝐷𝑠

𝛽
0
𝐶 𝑢(𝑠)𝑑𝑠

𝑡

0

, 0 ≤ 𝑡 ≤ 1 

Together with initial condition:  𝑢(0) = 0; and the inhomogeneous term formed as: 

𝑓(𝑡) =
6

Γ(3 − 𝛼)
𝑡2−𝛼 −

6𝜆

(4 − 𝛽)Γ(3 − 𝛽)
𝑡6−𝛽 

By comparison with the fundamental equation (1), we will see that 𝑛 = 1,𝑚 = 0 and 

𝑃𝑖(𝑡) = 0, for all 𝑖, so first case, if we take 𝛼1 = 𝛼 = 0.5 , 𝛽0 = 𝛽 = 0; 𝜆0 = 𝜆 =
1

3
 then 

from the equation above we've 𝑚𝛼1 = 1; and we have one kernel 𝒦0(𝑡, 𝑠) = 𝑠𝑡
2; with 

𝑁0(𝑢(𝑠)) = 𝑢(𝑠);and the inhomogeneous time become 𝑓(𝑡) =
6

Γ(2.5)
𝑡1.5 −

1

4
𝑡6. 

Applying the SADM for solving our problem, the recursive formula (6) with initial 

condition 𝑢(0) = 0leads to the following scheme: 

𝑢0(𝑡) = 𝐽0 𝑡
0.5𝑓(𝑡)

𝑢𝑟+1(𝑡) =
1

3
∫ �̅�0(𝑡, 𝑠)𝐴𝑟

0[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠
𝑡

0

, for all 𝑟 ≥ 0
} (20) 

So that: 

𝑢0(𝑡) = 𝐽0 𝑡
0.5 [

6

Γ(2.5)
𝑡1.5 −

1

4
𝑡6] = 3𝑡2 −

Γ(7)

4Γ(7.5)
𝑡6.5 

and, using equation (7) where ℓ = 0, we get: 

𝐴0
0[𝑢0] = 𝑁0(𝑢0(𝑠)) = 𝑢0(𝑠) = 3𝑠2 −

Γ(7)

4Γ(7.5)
𝑠6.5 

Also, 

�̅�0(𝑡, 𝑠) = 𝐽𝑠 𝑡
𝛼1𝒦0(𝑡, 𝑠) = 𝐽𝑠 𝑡

0.5𝑠𝑡2

=
2

Γ(3.5)
𝑠(𝑡 − 𝑠)2.5 +

2

Γ(2.5)
𝑠2(𝑡 − 𝑠)1.5 +

1

Γ(1.5)
𝑠3(𝑡 − 𝑠)0.5 

Thus, applying the second part of recursive relation (20) with 𝑟 = 0, we obtain: 

𝑢1(𝑡) =
1

3
∫ �̅�0(𝑡, 𝑠)𝐴0

0[𝑢0(𝑠)]𝑑𝑠
𝑡

0

=
Γ(7)

4Γ(7.5)
𝑡6.5 −

Γ(7)Γ(11.5)

102Γ(7.5)Γ(12)
𝑡11 

From equation (7) to find 𝐴1
0 put ℓ = 0, thus: 
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𝐴1
0[𝑢0, 𝑢1] = 𝑢1(𝑠)𝑁0

′(𝑢0(𝑠)) = 𝑢1(𝑠) ∗ 1 =
Γ(7)

4Γ(7.5)
𝑠6.5 −

Γ(7)Γ(11.5)

102Γ(7.5)Γ(12)
𝑠11 

Applying the second part of recursive relation (20) with 𝑟 = 1, we get: 

𝑢2(𝑡) =
1

3
∫ �̅�0(𝑡, 𝑠)𝐴1

0[𝑢0(𝑠), 𝑢1(𝑠)]𝑑𝑠 
𝑡

0

=
Γ(7)Γ(11.5)

102Γ(7.5)Γ(12)
𝑡11 −

Γ(7)Γ(11.5)Γ(16)

3978Γ(7.5)Γ(12)Γ(16.5)
𝑡15.5 

Using equation (7) for finding 𝐴2
0, puttingℓ = 0 we obtain: 

𝐴2
0[𝑢0, 𝑢1, 𝑢2] = 𝑢2𝑁0

′(𝑢0) +
1

2!
𝑢1
2𝑁0

′′(𝑢0) =  𝑢2(𝑠) ∗ 1 + 0

=
Γ(7)Γ(11.5)

102Γ(7.5)Γ(12)
𝑠11 −

Γ(7)Γ(11.5)Γ(16)

3978Γ(7.5)Γ(12)Γ(16.5)
𝑠15.5 

Applying the second part of recursive relation (20) with 𝑟 = 2, we gain: 

𝑢3(𝑡) =
1

3
∫ �̅�0(𝑡, 𝑠)𝐴2

0[𝑢0, 𝑢1, 𝑢2]𝑑𝑠 
𝑡

0

=
Γ(7)Γ(11.5)Γ(16)

3978Γ(7.5)Γ(12)Γ(16.5)
𝑡15.5

−
Γ(7)Γ(11.5)Γ(16)Γ(20.5)

208845Γ(7.5)Γ(12)Γ(16.5)Γ(21)
𝑡20 

and so on. Considering (16), the approximated solution with two, three and four terms is: 

𝑢(𝑡) ≅ �̂�1(𝑡) =∑𝑢𝑟(𝑡)

1

𝑟=0

= 3𝑡2 −
Γ(7)Γ(11.5)

102Γ(7.5)Γ(12)
𝑡11 

𝑢(𝑡) ≅ �̂�2(𝑡) =∑𝑢𝑟(𝑡)

2

𝑟=0

= 3𝑡2 −
Γ(7)Γ(11.5)Γ(16)

3978Γ(7.5)Γ(12)Γ(16.5)
𝑡15.5 

𝑢(𝑡) ≅ �̂�3(𝑡) =∑𝑢𝑟(𝑡)

3

𝑟=0

= 3𝑡2 −
Γ(7)Γ(11.5)Γ(16)Γ(20.5)

208845Γ(7.5)Γ(12)Γ(16.5)Γ(21)
𝑡20 

The following table presents a comparison between the exact solution and the 

approximate analytical solution �̂�1(𝑡), �̂�2(𝑡) and �̂�3(𝑡) respectively, depending on the 

least square error. 
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𝒕 
Exact 

solution 
𝒖(𝒕) = 3𝑡2 

Approximate analytical solution 

�̂�1(𝑡) �̂�2(𝑡) �̂�3(𝑡) 

0.0 0.0 0.0  0.0 0.0 

0.1 0.03 0.029999999999988  0.03 0.03 

0.2 0.12 0.119999999976969  0.12 0.12 

0.3 0.27  0.269999998007935  0.269999999999942 0.27 

0.4 0.48  0.479999952833939  0.479999999995066 0.48 

0.5 0.75  0.749999450914787  0.749999999843226  0.749999999999970 

0.6 1.08  1.079995920250909  1.079999997354048  1.079999999998875 

0.7 1.47 1.469977764436483  1.469999971142606 1.469999999975463 

0.8 1.92  1.919903403907878  1.919999771370495 1.919999999645473 

0.9 2.43  2.429647111663961  2.429998580954332 2.429999996261483 

1.0 3.0  2.998875473484848  2.999992734968932  2.999999969249717 

𝑳. 𝑺. 𝑬 1.398932 𝑒 − 006 5.484747 𝑒 − 011 9.596827 𝑒 − 016 

 

Applying the MADM 1 for solving our problem, first from equation (11) with initial 

situation 𝑢(0) = 0, given 𝑓(𝑡) and using the definition of R-L integral for order 𝛼1 =
0.5, we obtain: 

𝑔(𝑡) =  𝐽𝑎 𝑡
𝛼1𝑓(𝑡) + ∑

𝑢(𝑘)(0)

𝑘!

𝑚𝛼1−1

𝑘=0

𝑡𝑘 = 3𝑡2 −
Γ(7)

4Γ(7.5)
𝑡6.5 

In other words, we can set:𝑓1(𝑡) = 3𝑡2    and 𝑓2(𝑡) = −
Γ(7)

4Γ(7.5)
𝑡6.5. The recursive 

components (13)leads to the following scheme: 
𝑢0(𝑡) = 𝑓1(𝑡)

𝑢1(𝑡) = 𝑓2(𝑡) + 𝜆0∫ �̅�0(𝑡, 𝑠)𝐴0
0[𝑢0(𝑠)]𝑑𝑠

𝑡

0

  𝑢𝑟+1(𝑡) = 𝜆0∫ �̅�0(𝑡, 𝑠)𝐴𝑟
0[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

0

, 𝑟 ≥ 1
}
 
 

 
 

(21) 

So that: 

𝑢0(𝑡) = 𝑓1(𝑡) = 3𝑡2 

and, using equation (7) where ℓ = 0, we find the different 𝐴0
0 as: 

𝐴0
0[𝑢0] = 𝑁0(𝑢0(𝑠)) = 𝑢0(𝑠) = 3𝑠2 

𝑢1(𝑡) = 𝑓2(𝑡) + 𝜆0∫ �̅�0(𝑡, 𝑠)𝐴0
0[𝑢0(𝑠)]𝑑𝑠

𝑡

0

= −
Γ(7)

4Γ(7.5)
𝑡6.5

+
1

3
∫ [

2

Γ(3.5)
𝑠(𝑡 − 𝑠)2.5 +

2

Γ(2.5)
𝑠2(𝑡 − 𝑠)1.5

𝑡

0

+
1

Γ(1.5)
𝑠3(𝑡 − 𝑠)0.5] [3𝑠2]𝑑𝑠 = −

Γ(7)

4Γ(7.5)
𝑡6.5 +

Γ(7)

4Γ(7.5)
𝑡6.5 = 0 

Thus, all second part of recursive relation (21) with each 𝑟 ≥ 1, we gain: 
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  𝑢𝑟+1(𝑡) = 𝜆0∫ �̅�0(𝑡, 𝑠)𝐴𝑟
0[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

0

= 0 

So, it is obvious that each component of 𝑢𝑟 , 𝑟 ≥ 1 is zero. The solution is: 𝑢(𝑡) = 3𝑡2. 

which is the exact solution for our problem. 

second case, if we take 𝛼1 = 𝛼 = 0.5, 𝛽0 = 0 and 𝛽1 = 𝛽 = 0.8; 𝜆1 = 𝜆 =
1

3
 then 

from the equation above we’ve 𝑚𝛼1 = 1; and we have two kernels𝒦1(𝑡, 𝑠) =

𝑠𝑡2and𝒦0(𝑡, 𝑠) = 0; with 𝑁1(𝑢(𝑠)) = 𝐷𝑠
0.8

0
𝐶 𝑢(𝑠)and𝑁0(𝑢(𝑠)) = 0. Respectively, the 

inhomogeneous time become 𝑓(𝑡) =
6

Γ(2.5)
𝑡1.5 −

5

8 Γ(2.2)
𝑡5.2.  

Applying the SADM, the recursive formula (6) with 𝑢(0) = 0leads to the following 

scheme: 

𝑢0(𝑡) = 𝐽0 𝑡
0.5𝑓(𝑡)

𝑢𝑟+1(𝑡) =
1

3
∫ �̅�1(𝑡, 𝑠)𝐴𝑟

1[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠
𝑡

0

, for all 𝑟 ≥ 0
} (22) 

So that: 

𝑢0(𝑡) = 𝐽0 𝑡
0.5 [

6

Γ(2.5)
𝑡1.5 −

5

8 Γ(2.2)
𝑡5.2] = 3𝑡2 −

5Γ(6.2)

8 Γ(2.2)Γ(6.7)
𝑡5.7 

And for 𝑟 = 0, using equation (7) where ℓ = 1, we get: 

𝐴0
1[𝑢0] = 𝑁1(𝑢0(𝑠)) = 𝐷𝑠

0.8
0
𝐶 𝑢0(𝑠) =

6

Γ(2.2)
𝑠1.2 −

5Γ(6.2)

8Γ(2.2)Γ(5.9)
𝑠4.9 

Also, 

�̅�1(𝑡, 𝑠) = 𝐽𝑠 𝑡
𝛼1𝒦1(𝑡, 𝑠) = 𝐽𝑠 𝑡

0.5𝑠𝑡2

=
2

Γ(3.5)
𝑠(𝑡 − 𝑠)2.5 +

2

Γ(2.5)
𝑠2(𝑡 − 𝑠)1.5 +

1

Γ(1.5)
𝑠3(𝑡 − 𝑠)0.5 

Thus, we obtain: 

𝑢1(𝑡) =
1

3
∫ �̅�1(𝑡, 𝑠)𝐴0

1[𝑢0(𝑠)]𝑑𝑠
𝑡

0

=
1092Γ(3.2)

25Γ(2.2)Γ(6.7)
𝑡5.7 −

7031Γ(6.2)Γ(6.9)

480Γ(2.2)Γ(5.9)Γ(10.4)
𝑡9.4 

Put ℓ = 1 in equation (7) to computing 𝐴1
1. Thus 

𝐴1
1[𝑢0, 𝑢1] =

𝑑

𝑑𝜆
[𝑁1(𝑢0(𝑠) + 𝜆𝑢1(𝑠))]𝜆=0 = 𝐷0

𝐶
𝑠
0.8𝑢1(𝑠)

=
1092Γ(3.2)

25Γ(2.2)Γ(5.9)
𝑠4.9 −

7031Γ(6.2)Γ(6.9)

480Γ(2.2)Γ(5.9)Γ(9.6)
𝑠8.6 

So, from the recursive relation (22) with 𝑟 = 1, we get: 
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𝑢2(𝑡) =
1

3
∫ �̅�1(𝑡, 𝑠)𝐴1

1[𝑢0(𝑠), 𝑢1(𝑠)]𝑑𝑠 
𝑡

0

=
639821Γ(3.2)Γ(6.9)

625Γ(2.2)Γ(5.9)Γ(10.4)
𝑡9.4 −

1427293Γ(6.2)Γ(6.9)Γ(10.6)

2000Γ(2.2)Γ(5.9)Γ(9.6)Γ(14.1)
𝑡13.1 

Using equation (7) for finding 𝐴2
1, we obtain: 

𝐴2
1[𝑢0, 𝑢1, 𝑢2] =

1

2

𝑑2

𝑑𝜆2
[𝑁1(𝑢0(𝑠) + 𝜆𝑢1(𝑠) + 𝜆

2𝑢2(𝑠))]𝜆=0 = 𝐷0
𝐶

𝑠
0.8𝑢2(𝑠)

=
639821Γ(3.2)Γ(6.9)

625Γ(2.2)Γ(5.9)Γ(9.6)
𝑠8.6 −

1427293Γ(6.2)Γ(6.9)Γ(10.6)

2000Γ(2.2)Γ(5.9)Γ(9.6)Γ(13.3)
𝑠12.3 

From recursive relation (20) with 𝑟 = 2, we gain: 

𝑢3(𝑡) =
1

3
∫ �̅�1(𝑡, 𝑠)𝐴2

1[𝑢0(𝑠), 𝑢1(𝑠), 𝑢2(𝑠)]𝑑𝑠 
𝑡

0

=
779301978Γ(3.2)Γ(6.9)Γ(10.6)

15625Γ(2.2)Γ(5.9)Γ(9.6)Γ(14.1)
𝑡13.1

−
(1427293)(8313)Γ(6.2)Γ(6.9)Γ(10.6)Γ(14.3)

(200000)Γ(2.2)Γ(5.9)Γ(9.6)Γ(13.3)Γ(17.8)
𝑡16.8 

Also, by same procedure, we get: 

𝐴3
1[𝑢0, 𝑢1, 𝑢2, 𝑢3] =

1

3!

𝑑3

𝑑𝜆3
[𝑁1(𝑢0(𝑠) + 𝜆𝑢1(𝑠) + 𝜆

2𝑢2(𝑠) + 𝜆
3𝑢3(𝑠))]𝜆=0

= 𝐷0
𝐶

𝑠
0.8𝑢3(𝑠)

=
779301978Γ(3.2)Γ(6.9)Γ(10.6)

15625Γ(2.2)Γ(5.9)Γ(9.6)Γ(13.3)
𝑠12.3

−
(1427293)(8313)Γ(6.2)Γ(6.9)Γ(10.6)Γ(14.3)

(200000)Γ(2.2)Γ(5.9)Γ(9.6)Γ(13.3)Γ(17)
𝑠16 

From recursive relation (20) with 𝑟 = 2, we gain: 

𝑢4(𝑡) =
1

3
∫ �̅�1(𝑡, 𝑠)𝐴3

1[𝑢0(𝑠), 𝑢1(𝑠), 𝑢2(𝑠), 𝑢3(𝑠)]𝑑𝑠 
𝑡

0

=
(259767326)(24939)Γ(3.2)Γ(6.9)Γ(10.6)Γ(14.3)

1562500Γ(2.2)Γ(5.9)Γ(9.6)Γ(13.3)Γ(17.8)
𝑡16.8

−
(1427293)(52649)Γ(6.2)Γ(6.9)Γ(10.6)Γ(14.3)Γ(18)

(10000)Γ(2.2)Γ(5.9)Γ(9.6)Γ(13.3)Γ(17)Γ(21.5)
𝑡20.5 
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and so on. The following table presents a comparison between the exact solution and the 

approximate analytical solution �̂�𝑘(𝑡), 𝑘 ≥ 0 respectively, depending on the least square 

error. 

𝒕 
Exact 

solution 
𝒖(𝒕) = 3𝑡2 

Approximate analytical solution�̂�𝑀(𝑡) = ∑ 𝑢𝑘(𝑡)
𝑀
𝑘=0 , 𝑀 ∈ ℤ+ 

�̂�0(𝑡) �̂�1(𝑡) �̂�2(𝑡) �̂�3(𝑡) �̂�4(𝑡) 

0.0 0.00 0.0 0.0 0.0 0.0 0.0 

0.1 0.03 0.0299995362 0.029999999999 0.03 0.03 0.03 

0.2 0.12 0.11997589 0.119999996 0.12 0.12 0.12 

0.3 0.27 0.2697568255 0.2699998206 0.26999999999 0.27 0.27 

0.4 0.48 0.47874666 0.4799973191 0.4799999953 0.48 0.48 

0.5 0.75 0.7455284719 0.7499781609 0.7499999124 0.7499999997 0.75 

0.6 1.08 10.067358778 1.07987879 1.079999046 1.079999994 1.08 

0.7 1.47 1.439564127 1.469483776 1.46999281 1.469999915 1.4699999999 

0.8 1.92 1.854846182 1.918188815 1.919958655 1.919999195 1.9199999986 

0.9 2.43 2.302500276 2.424519799 2.42980657 2.429994174 2.429999846 

1.0 3.00 2.767551396 2.985245757 2.999230962 2.99965795 2.999998665 

𝑳. 𝑺. 𝑬 
7.564132  
𝑒 − 02 

2.512823  
𝑒 − 04 

6.305965 
𝑒 − 07 

1.204603 
𝑒 − 09 

1.806304 
𝑒 − 12 

 

Applying the MADM 1 for solving our problem as in second case, The equation (11) 

with initial situation 𝑢(0) = 0, given 𝑓(𝑡) =
6

Γ(2.5)
𝑡1.5 −

5

8 Γ(2.2)
𝑡5.2 and using the 

definition of R-L integral for order 𝛼1 = 0.5 and𝑚𝛼1 = 1, we obtain: 

𝑔(𝑡) =  𝐽𝑎 𝑡
𝛼1𝑓(𝑡) + ∑

𝑢(𝑘)(0)

𝑘!

𝑚𝛼1−1

𝑘=0

𝑡𝑘 = 3𝑡2 −
5Γ(6.2)

8 Γ(2.2)Γ(6.7)
𝑡5.7 

In other words, we can set:𝑓1(𝑡) = 3𝑡2    and 𝑓2(𝑡) = −
5Γ(6.2)

8 Γ(2.2)Γ(6.7)
𝑡5.7. The recursive 

components (13)leads to the following scheme: 
𝑢0(𝑡) = 𝑓1(𝑡)

𝑢1(𝑡) = 𝑓2(𝑡) + 𝜆1∫ �̅�1(𝑡, 𝑠)𝐴0
1[𝑢0(𝑠)]𝑑𝑠

𝑡

0

  𝑢𝑟+1(𝑡) = 𝜆1∫ �̅�1(𝑡, 𝑠)𝐴𝑟
1[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

0

, 𝑟 ≥ 1
}
 
 

 
 

(21) 

So that: 

𝑢0(𝑡) = 𝑓1(𝑡) = 3𝑡2 

Using equation (7) where𝑟 = 0 andℓ = 1, we get: 

𝐴0
1[𝑢0] = 𝑁1(𝑢0(𝑠)) = 𝐷𝑠

0.8
0
𝐶 𝑢0(𝑠) =

6

Γ(2.2)
𝑠1.2 
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𝑢1(𝑡) = 𝑓2(𝑡) + 𝜆1∫ �̅�1(𝑡, 𝑠)𝐴0
1[𝑢0(𝑠)]𝑑𝑠

𝑡

0

= −
5Γ(6.2)

8 Γ(2.2)Γ(6.7)
𝑡5.7

+
1

3
∫ [

2

Γ(3.5)
𝑠(𝑡 − 𝑠)2.5 +

2

Γ(2.5)
𝑠2(𝑡 − 𝑠)1.5

𝑡

0

+
1

Γ(1.5)
𝑠3(𝑡 − 𝑠)0.5] [

6

Γ(2.2)
𝑠1.2] 𝑑𝑠

= −
5Γ(6.2)

8 Γ(2.2)Γ(6.7)
𝑡5.7 +

5Γ(6.2)

8 Γ(2.2)Γ(6.7)
𝑡5.7 = 0 

Thus, all second part of recursive relation (21) with each 𝑟 ≥ 1, we gain: 

  𝑢𝑟+1(𝑡) = 𝜆1∫ �̅�1(𝑡, 𝑠)𝐴𝑟
1[𝑢0(𝑠), 𝑢1(𝑠),⋯ , 𝑢𝑟(𝑠)]𝑑𝑠

𝑡

0

= 0 

So, it is obvious that each component of 𝑢𝑟 , 𝑟 ≥ 1 is zero. The solution is: 𝑢(𝑡) = 3𝑡2. 

which is the exact solution for our problem. 

 

Example (2): Let us take the nonlinear IFDE of V-H typewith variable coefficients for 

multi-higher fractional orders: 

𝐷0
𝐶

𝑡
1.4𝑢(𝑡) + 𝑡𝑢(𝑡) = 𝑓(𝑡) + ∫ 𝑡𝑠[ 𝐷0

𝐶
𝑠
0.5𝑢(𝑠)]2𝑑𝑠

𝑡

0

 

Where theinhomogeneous term is 

𝑓(𝑡) =
6

Γ(2.6)
𝑡1.6 −

36

7Γ2(3.5)
𝑡8 + 𝑡4 − 𝑡 

with the initial conditions 𝑢(0) = −1; 𝑢′(0) = 0 and has the exact solution 𝑢(𝑡) = 𝑡3 −
1. 

 By comparison with the fundamental equation (1), we will see that 𝑛 = 𝑚 = 1 and 

𝑃1(𝑡) = 𝑡; 𝛼1 = 1.4 , 𝛽0 = 0, 𝛽1 = 0.5; 𝜆0 = 0, 𝜆1 = 1 then from the equation above 

we've 𝑚𝛼1 = 2; and the kernels with Hammerstein terms are 𝒦0(𝑡, 𝑠) = 0; with 

𝑁0(𝑢(𝑠)) = ℋ0(𝑠 , 𝑢(𝑠)) = 0;𝒦1(𝑡, 𝑠) = 𝑡𝑠; with 𝑁1(𝑢(𝑠)) = ℋ1 (𝑠 , 𝐷𝑎
𝐶

𝑠
𝛽1𝑢(𝑠)) =

[ 𝐷0
𝐶

𝑠
0.5𝑢(𝑠)]2;and the inhomogeneous term𝑓(𝑡). 

Applying the SADM for solving our problem, the recursive formula (6) with initial 

condition conditions leads to the following scheme: 

𝑢0(𝑡) = 𝐽0 𝑡
1.4 [

6

Γ(2.6)
𝑡1.6 −

36

7Γ2(3.5)
𝑡8 + 𝑡4 − 𝑡] − 1

= 𝑡3 −
36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 +

Γ(5)

Γ(6.4)
𝑡5.4 −

1

Γ(3.4)
𝑡2.4 − 1 

Before finding 𝑢1(𝑡) we must calculate 𝐴0
ℓ[𝑢0] = 𝑁ℓ(𝑢0)for all ℓ = 0,1 using the 

formula (7): 

𝐴0
0[𝑢0(𝑠)] = 𝑁0(𝑢0(𝑠)) = 0 
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𝐴0
1[𝑢0(𝑠)] = 𝑁1(𝑢0(𝑠)) = [ 𝐷0

𝐶
𝑠
0.5𝑢0(𝑠)]

2

=
36

Γ2(3.5)
𝑠5 −

432Γ(9)

7Γ3(3.5)Γ(9.9)
𝑠11.4 +

12Γ(5)

Γ(3.5)Γ(5.9)
𝑠7.4

−
12

Γ(3.5)Γ(2.9)
𝑠4.4 +

1296Γ2(9)

49Γ4(3.5)Γ2(9.9)
𝑠17.8

−
72Γ(9)Γ(5)

7Γ2(3.5)Γ(9.9)Γ(5.9)
𝑠13.8 +

72Γ(9)

7Γ2(3.5)Γ(9.9)Γ(2.9)
𝑠10.8

+
Γ2(5)

Γ2(5.9)
𝑠9.8 −

2Γ(5)

Γ(5.9)Γ(2.9)
𝑠6.8 +

1

Γ2(2.9)
𝑠3.8 

Also, 

�̅�0(𝑡, 𝑠) = 𝐽𝑠 𝑡
𝛼1𝒦0(𝑡, 𝑠) = 0 

�̅�1(𝑡, 𝑠) = 𝐽𝑠 𝑡
𝛼1𝒦1(𝑡, 𝑠) = 𝐽𝑠 𝑡

1.4𝑠𝑡 =
1

Γ(3.4)
𝑠(𝑡 − 𝑠)2.4 +

1

Γ(2.4)
𝑠2(𝑡 − 𝑠)1.4 

And  

𝐽0 𝑡
1.4(�̅�1(𝑡)𝑢0(𝑡))

= 𝐽0 𝑡
1.4 (−𝑡 [𝑡3 −

36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 +

Γ(5)

Γ(6.4)
𝑡5.4 −

1

Γ(3.4)
𝑡2.4 − 1])

=
−Γ(5)

Γ(6.4)
𝑡5.4 +

36Γ(9)Γ(11.4)

7Γ2(3.5)Γ(10.4)Γ(12.8)
𝑡11.8 −

Γ(5)Γ(7.4)

Γ(6.4)Γ(8.8)
𝑡7.4

+
Γ(4.4)

Γ(3.4)Γ(5.8)
𝑡4.8 +

1

Γ(3.4)
𝑡2.4 

Thus: 

𝑢1(𝑡) = 𝐽0 𝑡
1.4(�̅�1(𝑡)𝑢0(𝑡)) +∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴0

ℓ[𝑢0(𝑠)]𝑑𝑠
𝑡

0

1

ℓ=0

=   −
Γ(5)

Γ(6.4)
𝑡5.4 +

124.8

Γ(3.5)Γ(12.8)
[
3Γ(9)

7Γ(3.5)
+
Γ(5)Γ(9.4)

Γ(5.9)
] 𝑡11.8

−
Γ(5)Γ(7.4)

Γ(6.4)Γ(8.8)
𝑡7.4 +

Γ(4.4)

Γ(3.4)Γ(5.8)
𝑡4.8 +

1

Γ(3.4)
𝑡2.4

+
36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 −

6220.8Γ(9)Γ(13.4)

7Γ3(3.5)Γ(9.9)Γ(16.8)
𝑡15.8

−
88.8Γ(6.4)

Γ(3.5)Γ(2.9)Γ(9.8)
𝑡8.8 +

26956.8Γ2(9)Γ(19.8)

49Γ4(3.5)Γ2(9.9)Γ(23.2)
𝑡22.2

−
1209.6Γ(9)Γ(5)Γ(15.8)

7Γ2(3.5)Γ(9.9)Γ(5.9)Γ(19.2)
𝑡18.2

+
993.6Γ(9)Γ(12.8)

7Γ2(3.5)Γ(9.9)Γ(2.9)Γ(16.2)
𝑡15.2 +

12.8Γ2(5)Γ(11.8)

Γ2(5.9)Γ(15.2)
𝑡14.2

−
19.6Γ(5)Γ(8.8)

Γ(5.9)Γ(2.9)Γ(12.2)
𝑡11.2 +

6.8Γ(5.8)

Γ2(2.9)Γ(9.2)
𝑡8.2 
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The noise terms±
Γ(5)

Γ(6.4)
𝑡5.4; ±

1

Γ(3.4)
𝑡2.4 and ±

36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 appears in 𝑢0(𝑡) 

and 𝑢1(𝑡). Cancelling these terms from the zeros component 𝑢0(𝑡) gives the solution 

which is the exact solution: 𝑢(𝑡) = 𝑡3 − 1 that satisfies the fractional integro-differential 

equation above. 

Applying the MADM 1 for solving our problem, first from equation (11) with initial 

conditions𝑢(0) = −1; 𝑢′(0) = 0 , given 𝑓(𝑡) and using the definition of R-L integral for 

order 𝛼1 = 1.4 so 𝑚𝛼1 = 2, we get: 

𝑔(𝑡) =  𝐽𝑎 𝑡
𝛼1𝑓(𝑡) + ∑

𝑢(𝑘)(0)

𝑘!

𝑚𝛼1−1

𝑘=0

𝑡𝑘

= 𝑡3 −
36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 +

Γ(5)

Γ(6.4)
𝑡5.4 −

1

Γ(3.4)
𝑡2.4

− 1                          (22) 
From 𝑔(𝑡) we assume that:  

𝑓1(𝑡) = 𝑡
3 − 1 

𝑓2(𝑡) = −
36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 +

Γ(5)

Γ(6.4)
𝑡5.4 −

1

Γ(3.4)
𝑡2.4 

We next use the recurrence formula (13) to obtain: 

𝑢0(𝑡) = 𝑓1(𝑡) = 𝑡
3 − 1 

𝐽𝑎 𝑡
𝛼1[�̅�1(𝑡)𝑢0(𝑡)] = 𝐽0 𝑡

1.4[−𝑡(𝑡3 − 1)] = −
Γ(5)

Γ(6.4)
𝑡5.4 +

1

Γ(3.4)
𝑡2.4 

Apply formula (7) to calculate 𝐴0
ℓ[𝑢0] = 𝑁ℓ(𝑢0)for all ℓ = 0,1; so: 

𝐴0
0[𝑢0(𝑠)] = 𝑁0(𝑢0(𝑠)) = 0 

𝐴0
1[𝑢0(𝑠)] = 𝑁1(𝑢0(𝑠)) = [ 𝐷0

𝐶
𝑠
0.5𝑢0(𝑠)]

2 =
36

Γ2(3.5)
𝑠5 

∫ �̅�1(𝑡, 𝑠)𝐴0
1[𝑢0(𝑠)]𝑑𝑠

𝑡

0

= ∫ [
1

Γ(3.4)
𝑠(𝑡 − 𝑠)2.4 +

1

Γ(2.4)
𝑠2(𝑡 − 𝑠)1.4] [

36

Γ2(3.5)
𝑠5]  𝑑𝑠

𝑡

0

=
36 ∗ 8Γ(7)

Γ2(3.5)Γ(10.4)
𝑡9.4 

Thus, 𝑢1(𝑡) formed by using equation (13):  

𝑢1(𝑡) = 𝑓2(𝑡) + 𝐽0 𝑡
𝛼1[�̅�1(𝑡)𝑢0(𝑡)] +∑𝜆ℓ∫ �̅�ℓ(𝑡, 𝑠)𝐴0

ℓ[𝑢0(𝑠)]𝑑𝑠
𝑡

0

1

ℓ=0

= −
36Γ(9)

7Γ2(3.5)Γ(10.4)
𝑡9.4 +

Γ(5)

Γ(6.4)
𝑡5.4 −

1

Γ(3.4)
𝑡2.4 −

Γ(5)

Γ(6.4)
𝑡5.4

+
1

Γ(3.4)
𝑡2.4 +

36 ∗ 8Γ(7)

Γ2(3.5)Γ(10.4)
𝑡9.4 = 0 

It follows immediately that:𝑢𝑟+1(𝑡) = 0  , ∀ 𝑟 ≥ 1. So 𝑢(𝑡) = 𝑡3 − 1 is the solution 

which is the exact expression for our nonlinear IFDE of V-H type. 

Example (3): Take the nonlinear IFDE of V-H typewith variable coefficients on the 

interval [0,1] for multi-higher fractional orders: 
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𝐷0
𝐶

𝑡
0.4𝑢(𝑡) = 𝑓(𝑡) + ∫

𝑡

𝑠
[

𝑡

0

𝐷0
𝐶

𝑠
0.5𝑢(𝑠)]2𝑑𝑠   + ∫(−𝑡)3𝑒𝑥𝑝 (2𝑠0.3)

𝑡

0

𝑑𝑠

𝑒𝑥𝑝 (Γ(1.3) 𝐷0
𝐶

𝑠
0.7𝑢(𝑠))

 

With one initial condition 𝑢(0) = 5, where  

𝑓(𝑡) =
2

Γ(1.6)
𝑡0.6 −

4

Γ2(1.5)
𝑡2 + 𝑡4 

Now, from the equation above we have: 

𝒦2(𝑡, 𝑠) = −𝑡
3𝑒𝑥 𝑝(2𝑠0.3)   ;  𝒦1(𝑡, 𝑠) =

𝑡

𝑠
  ;  𝒦0(𝑡, 𝑠) = 0  

𝛼1 = 0.4   ;   𝛽2 = 0.7 ,  𝛽1 = 0.5  ,  𝛽0 = 0  ;  𝑚𝛼1 = 1 

𝑁2(𝑢(𝑠)) =
1

𝑒𝑥𝑝 (Γ(1.3) 𝐷0
𝐶

𝑠
0.7𝑢(𝑠))

   ;    𝑁1(𝑢(𝑠)) = [ 𝐷0
𝐶

𝑠
0.5𝑢(𝑠)]2 

Using equation (11) we get: 

𝑔(𝑡) = 2𝑡 + 5 −
8

Γ2(1.5)Γ(3.4)
𝑡2.4 +

24

Γ(5.4)
𝑡4.4 

Assume that from 𝑔(𝑡), we putting  

𝑓1(𝑡) = 2𝑡 + 5    ;     𝑓2(𝑡) = −
8

Γ2(1.5)Γ(3.4)
𝑡2.4 +

24

Γ(5.4)
𝑡4.4 

Using equation (8), with ℓ = 1,2 we get: 

𝐴0
1 = 𝑁1(𝑢0) =

4

Γ2(1.5)
𝑠 

    𝐴0
2 = 𝑁2(𝑢0) = 𝑒𝑥𝑝 (−2𝑠

0.3) 
Applying the MADM 1recurrence formula (13) to obtain: 

𝑢0(𝑡) = 𝑓1(𝑡) = 2𝑡 + 5 

𝑢1(𝑡) = 𝑓2(𝑡) + 𝐽0 𝑡
0.4∫

4𝑡

Γ2(1.5)
𝑑𝑠 −

𝑡

0

𝐽0 𝑡
0.4∫𝑡3𝑑𝑠

𝑡

0

= 0 

It follows immediately that: 𝑢𝑘(𝑡) = 0  , ∀ 𝑘 ≥ 2. So the exact solution 𝑢(𝑡) = 2𝑡 + 5 

readily obtained that satisfies the fractional integro-differential equation above. 
 

5. Conclusion 

In this study, we derive a novel technique based totally on Adomian and modified 

Adomian decomposition method which has been efficaciously and successfully applied to 

finding the approximate as well as specific solution for multi-higher fractional nonlinear 

integro-differential equations of the Volterra-Hammerstein type. These methods are very 

powerful and efficient in finding analytical as well as a numerical solution to our 

problem. It provides a more realistic series solution that converges very rapidly to the 

solutions. Sometimes the process of finding a standard Adomian decomposition method 

is not easy, so we use the Modifications and we will use the truncated collection series 

for the numerical purpose as in instance example (1).  

 A Considerable advantage of the method is that if we not obtain the exact solution, 

then the solution can be written as a shape of truncated collection, after which the 

required function may be without problems evaluated for arbitrary values. To obtain the 



Journal of University of Babylon for Pure and Applied Sciences, Vol. (28), No. (1): 2020 

215 

 

best approximation we must use more terms.Sometimes the noise terms in the Adomian 

method will not appear, so we use modified Adomian decomposition method. 
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 الخلاصة
هذا البحث يطبق بفعاليه طريقه التحليل الادوميانى وطريقه التحليل الادوميانى المعدله كتقنيات عددية لتعيين الحل شبه التحليلى او       

( والتى توصف فيها V-Hهاميرشتين )-( من نوع فولتيراIFDEالحل شبه التقريبى للمعادلات التفاضليه التكامليه اللاخطيه للرتب الكسريه )
(  الى بعض معادلات جبريه V-H( لنوع  )IFDEلمشتقه الكسريه المتعدده العليا بنمط كابوتو. فى هذا النهج سنغير بشكل جذرى ال )ا

( لمركبات متقاربه نوعيا للحل المستند )المعتمد(  Countlessيه )دتكراريه وان الحل لهذه المعادلات هو بمثابه مجموع من المتتابعات اللاعد
ود الضوضائيه وذلك فى حاله عدم حصولنا على حل من النوع المغلق وان الحدود المقطوعه )المحذوفه( يستخدم للاغراض على الحد
 واخيرا تم اعطاء امثله لتوضيح هذه الافكار والاعتبارات. العدديه.

 
 


