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Abstract 
In different applications, we can widely use the neural network approximation. They are being applied 

to solve many problems in computer science, engineering, physics, etc. The reason for successful 

application of neural network approximation is the neural network ability to approximate arbitrary 

function. In the last 30 years, many papers have been published showing that we can approximate any 

continuous function defined on a compact subset of the Euclidean spaces of dimensions greater than 1, 

uniformly using a neural network with one hidden layer. Here we prove that any real function in L_P 

(C) defined on a compact and convex subset   of   can be approximated by a sigmoidal neural 

network with one hidden layer, that we call nearly exponential approximation. 

 

Keywords: Nearly exponent function. Best approximation. Modulus of smoothness. Neural network 

approximation. 

 

  الخلاصة
يدخل التقريب باستخدام الشبكات العصبية في الكثير من التطبيقات المهمة. حيث انه يحل الكثير من المشاكل في مجالات علوم 

لخ. ان سبب نجاح التقريب باستخدام الشبكات العصبية هو امكانيته من تقريب اية دالة مهما كان الحاسوب و الهندسة و الفيزياء, ا
نوعها. في الثلاثين سنة الماضية نشرت الكثير من البحوث  جميع تلك البحوث بينت ان كل دالة معرفة على مجموعة مرصوصة 

 الشبكة العصبية ذان الطبقة المخفية الواحدة. في هذا البحث  باستخدام بانتظام يمكن تقريبها    محدبة و جزئية من الفضاء الاقليدي  

 عصبيه شبكه ميمكن تقريبها باستخدا    في  معرفه على مجموعه محدبة ومرصوصة و        )تنتمي الى أن لأية داله برهنا 
 .باستخدام الشبكات العصبية من نوع الاس القريب بالتقريب نسميه ما وهذامن نوع الاس القريب ذات طبقه مخفيه واحده 

    
.التقريب باستخدام الشبكات العصبية .. أفضل تقريب. معامل النعومةالقريب الآس دالةالكلمات المفتاحية :   

 

 
1 Introduction and Basics  
Artificial forward neural networks are nonlinear parametric expressions representing 

multivariate numerical functions. In connection  with   such  paradigms   there    arise 

mainly three problems: a density problem, a complexity problem,  and an algorithmic 

problem. The density problem deals with the following question: which functions can 

be approximated and, in particular, can all members of a certain class of functions be 

approximated in a suitable sense. This problem was satisfactorily  solved  in  the  late 

1980’s [ see (Cybenko,1989; Funahashi,1989; Hornik  et al.,1989) ]. Any continuous 

function on any compact subset of    can be uniformly approximated arbitrarily 

closely by a neural network with one hidden layer. Moreover, the proof given in 

(Hornik et al.,1989) provides an intimate    connection  forward     neural networks 

and polynomials. (Ratter,1999)  

In this paper we improve the works in (Cybenko,1989; Funahashi, 1989; Hornik  et 

al., 1989, Ranjita R., 2018) and introduce a direct theorem using neural weights in 

term of polynomial approximation of functions in    spaces .  
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Let   be the set of nonnegative integer numbers, and let   be the set of real numbers, 

   be the set of  nonnegative real numbers,    be the d-dimensional Euclidean space 

    )  and let   be a finite space subset of     let                )       
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               and let     ) be the space of all d_variate algebraic polynomial, 

also we use the active function       is nearly exponential . 

Let    be a real valued function defined on a convex subset        Define 
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The rth symmetric difference of   is given by  
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Then the  rth  usual modulus of smoothness of       ) is defined by 

  

         )    )     | |  ‖  
      )‖    )           (Bhaya, 2003) 

Now let us recall the mathematical expression of the neural network, a three-layer of 

FNN with one hidden layer, d inputs and one output can be mathematically expressed 

as    )  ∑   
 
    (∑    

 
        )           where             are 

the thresholds,                  )     are connection weights of neuron   in 

the hidden layer, with the hidden layer of the input neurons,       are the 

connection strength of neuron    with the output neuron, and   is the activation 

function used in the network. (Wang and Zonghen, 2010) 

      ), is called Lipchitz continuous. If there exists          such that 

 ‖  
  ‖    )     )   then we get    )     

‖  
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   An exponential polynomial 

of maximal degree     is of the form ∑    
   

       )  for some    . (Ritter, 

1999) the symbol   
   ) stands for the set of all real, d-variate exponential  

polynomial of maximal degree n and arbitrary   . A function       is said to 

nearly exponential ,  whenever for any     , there exist real numbers ɤ        such 

that.  |       )         |   ,  for all    . 

Given some activation function           
   )   will be denote the set of all sums 

of the form   ∑  with            )   for some  (Ritter, 1999)    ( ג    ג )  Λ ג  

ȵ>0 and with a>0 independent of ג . 

From now on we shall use the notation        ) for the absolute constant depending 

on         only and not the same for all steps in our proofs.                                                                                                                                

As an auxiliary result we need the following theorem from. (Kareem, 2011).  

Theorem 1.1 (Kareem, 2011)   
If          

         then         )         )                
 )          

where        )  is the degree of best approximation   of    by algebraic polynomial 

of degree        which is         )           ‖      ‖                 is the 

space of all algebraic polynomials of degree    . 
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2. The Main Results  
Here, let us introduce our main results.    

 

Theorem   2.1       

For any          
 , we have     (    

   ))         )      
 

 
)         

Proof  

Use Theorem1.1 to approximate the function          
  by an algebraic 

polynomial of the form       )  ∑    ∏   
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The sequence 〈    )〉         converges to the identity function    . choose µ such 

that for a given      
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It is clear,   (  ) is an exponential polynomial  (  )      
   )  , and 
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Using (1) and (2) we get 
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Since (3) is true for any     , we get 
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Theorem 2.2 

For any       ), we have    (    
   ))         )      

 

 
)    )   where    is 

nearly exponential and C is a compact and convex set in       . 

Proof 

Let ȴ denote the Euclidean projection         , the function    )         
 . 

Using Theorem 2.1 to approximate the function   ) by an exponential polynomial of 

the from    )  ∑            )     , such that                                                         
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    , let                     

            )         }  Anther representation of    is    )  
 ∑              ,  where       and      independent of     Since    is nearly 

exponential function,  since    is exponential function then we can approximate      
by an expression ɤ δ(Ԏt+ ß)+ρ uniformly on the negative half line up to the error  .                                                                            
The sum 
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Similarly  if       Then we get 
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As a direct consequences of the above theorem we have the following corollaries.  
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Corollary  2.3  

For any       ) and any     , there exists a neural network of the form    )  

  )   (         (         with at most ( ג    ג )   ∑
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neurons satisfy  ‖   )   ‖    )      where   is nearly exponential and C is a                  

compact and convex subset of       . 

Proof   

Choose n such that        )      
 

 
)    )       From Theorem 2.2 there exists 

      
   )  Such that        )     this    is neural network of hidden neurons 

    )    

 
Corollary  2.4 

Let    be nearly exponential function and let C be a compact and convex set in 

          f is a Lipchitz continuous function, then             )  
   )

 
    }  neurons 

suffice. 

Proof  

We have two cases, the first  case       )  
   )
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  . From Theorem 2.3 the minimum is equal to 1 . Therefore 
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    let           )  
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     then using Theorem2.3  the 

minimum is at most      )           )  
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Conclusions 
We generalize the results proved in (Ranjita R., (2018)), for continuous functions to 

functions in Lp spaces. We prove that any function in Lp spaces defined on a convex 

and compact set can be nearly exponential approximated using sigmoidal neural 

network. This application makes the computer science researchers approximate any 

waves (the target function ) of a neural network. 
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