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ABSTRACT

In this research, the oscillation and the asymptotic behavior of a half-linear three-dimensional neutral
differential system of the second order have been studied, where all the non-oscillating solutions have been
classified into 16 different classes, and then sufficient conditions were given to prove that most of these
classes are inactive and non-occurring, that is empty, as for the rest classes, it has been proven that all its
bounded solutions, either oscillating or non-oscillating, converge to zero when t — oo, and all unbounded
solutions, are either oscillating or non-oscillating, goes to +co as t — oo. Some examples are given to
illustrate the obtained results.
Key words: Almost Oscillation, Neutral system, Three-dimensional, Second order.

-

Al
Gl o5 Gus ¢ Al Al (e ol Ciea sl DU alae sl ol laall lgladly ) Ay cast Gandl J3a
Dty Al ye Gl sda alies of Lelld clBY LAKN Lagyall elhae) 5 5 (geg ¢ Aalide A3 16 ) Ll e Jslall mues
CHED ¢ LAY e gl Ldiie CailS glow ¢ B2 sen ) g ¢ Al cball all W de)8 o ¢ saals
eldac) 2t > 00, Ladie + 00 ) ol Lde ye o LA 058 o) Ll Bake il Jelall WiSs ¢ t o 00 e jaual)
Ngdle Jpemall 5 A il sl A1 ey

c i Al D ¢ adae i oLy s tia i) L)

Page | 48

ISSN: 2312-8135 | Print ISSN: 1992-0652

| www.journalofbabylon.com



mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive
mailto:ahmed.abdulhasan1103a@sc.uobaghdad.edu.iq
mailto:hussainam_math@csw.uobaghdad.edu.iq
mailto:ahmed.abdulhasan1103a@sc.uobaghdad.edu.iq
mailto:xx@gmail.com

RDTINIE JOURNAL OF UNIVERSITY OF BABYLON

) ) Vol.31; No.1.| 2023
For Pure and Applied Sciences (JUBPAS)

i\ anlmax

=y D T

Ty Ty S

' alis

O T

o

v 5

T

y
14

TTov

Ty fireT

¢ I~

Lo wn e 2o o Rl 0

INTRODUCTION

Differential equations are one of the most important topics in mathematics due to their many
applications [1-3]. NDEs represent one of these equations that have been of interest to many
researchers, especiallyin the subject of oscillation and the behavior of the solution (see [4-8]). The
oscillation properties of systems of differential equations, whether they are ordinary, delay,
neutral, difference equations, or dynamic equations is the main concern of study (see [9-10]).
A few of these oscillation properties have been investigated in the system of NDEs, (see [11-13]).
Agarwal et al. [14], discussed the delay of nonlinear differential equation system as follows:

{x(t) =a@®)f(yt—1)
y(®) = -b®)g(xt - 1)

where they obtained sufficient conditions for the existence of nonoscillatory solution (NOS) for
this system and established some sufficient conditions to insure the oscillations of the solutions for
the system.

Mohamad and Abdulkareem,[15] discussed the almost oscillatory solutions of system of
differential equations of the form:

{[rl(t)([x(t) + P (Ox(@ (NN + @ Of (¥(01(£)) = 0
[r2 (&) (Y () + P2 Oy (DN + 1:Of, (x(02(®)) = 0’

In this work we consider the half-linear Neutral system of second order.

(L0, 0)™) = 2g,0y5 (0:(0))

(@05 0)) =2,y (0(0),  t= >0 (D)
(G O(@3(0)®) = g5y (03(1)

t > t,.

where,
(01(8) =y (&) + POy (2:(0)),

w2 (t) =y, (t) + P,(D)y, (Tz (t))' (2)
(@3(8) = y3(8) + P3(O)y3 (z:())-

foralli =1,2,3,1 € {1,—-1}

The following hypotheses are assumed to be satisfied:

(H1) a; > 0 is the ratio of two odd integers,

(HZ) (ir @i € C([to, Oo)l IR+)‘ ?i € C([to, Oo)t [0;1])r

(H3) 7; € C([ty, ), R), t;(t) <t,and tlim 7;(t) = oo,

(Hs) 0; € C([tg, ), R), 0;(t) < t,and tlim o;(t) = oo.

By a solution to system (1), we mean functions Y (t) = [y, (t), v, (t),y5(t)]" which have the
properties {; (t)(w’i(t))a‘ € C([ty, ), R) and satisfy system (1).

Definition 1.1 Asolution Y () = [y, (t), y»(t), y5(t)]" of the system (1) is called proper if,
sup{|y1 ()|, [y2 ()], 1y3(s)| : s € [t,0)T} >0, = t,.

Definition 1.2 A proper solution Y (t) is said to oscillateif it is eventually trivial or if at least one
component does not have an eventual constant sign. Otherwise, the solution is called
nonoscillatory.

Definition 1.3 A solution Y (t) of the system (1) is said to be almost oscillatory if some
components of Y (t) are oscillating and the others converge to zero.

A
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This paper consists of five sections: In the second and third sections, the asymptotic behavior of
NOS with A =1 and A = —1 respectively are studied. In the four sections, the main results for

system (1) are mentioned, and finally, some examples to illustrate the main results are presented.

2. NOS of the System (1), Case 4 = 1
In this section, the asymptotic behavior of NOS has studied with A = 1 which will used in the

following sections.
Remark 2.2. For simplicity, NOS is assumed here, if any exists, satisfy y;y,y; > 0.

i\ anlmax

ISSN: 2312-8135 | Print ISSN: 1992-0652

{% Assume that K; be the possible classes of the nature of NOS of (1), = 1,2, ....,14 , where:
t
S Table 1. The classes of all possible NOS of system (1), with 1 =1
* Classes Sign of w; (t) and w; Sign of  behavior ast — oo
{ n W, W, W ©® W, ©; w; w; g
C
E K. | + [+ ]|+ ] + ] + | + w; = E
: [
. K, + + + - - - Gi(wi() = 0 5
D c
3 K; + o+ o+ - =+ w3 = 3
E (1 (wy(t))*r =0 E
T Ca(@3(£))% = 0 :
B wy =0, -
L K, + i i = + = Wy —> 9
- WIPRRACHO R 5
b 3(w3(t))* - 0 5
I K + |+ | + + ~ T W Wy > _TE
- {a(w3(t))*2 = 0 =
3 $3(@5(£)% > 0 .
E K + o+ o+ o+ o+ - Wy = 0 é
5 $3(@5(£))™ = 0 5
[ K, + o+ o+ - 4+ o+ W3 = O —
- ACHOIER" £
Kg + |+ + ]+ -+ W3~ 0 g
= $2(wa(t))*2 = 0 2l
T Ko + - — + — — Wy, > —0, %
EI: wq = © 0Or Tg
5 ACIO R 8
wy <0 w3 = —o0 or Q
F 0 S0 @) - 0. £

Page | 50



mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

RDTINIE JOURNAL OF UNIVERSITY OF BABYLON

) ) Vol.31; No.1.| 2023
For Pure and Applied Sciences (JUBPAS)

i\ anlmax

=y D T

Ty Ty S

' alis

O T

o

y

o

Ty fireT

¢ I~

Lo wn e 2o o Rl 0

w3 =0

Ko + — — + + — Wy — ©0r
C1(@ () =0,
C2(wa(8))* — 0

w3 = —oo or
{3(ws(1)* = 0.

K4 = = + = = + W, = —x,
(1)2 i —OO’ or
G2(w3(8))*2 = 0,
wy <0, w3 —> 0 0r
{3(w3(t))* — 0.
w; =0,
Ko, - - + + - + (w1 () =0,
w3 < 0. w, = —00, Or
2(wz (1)) = 0,
w3 = 0 0r
{3(w3())* - 0.

Kis — | = = — + | - w, = —oo or
L (@i ()% - 0,

w, — 00, Or
WY 20, L) -0,

w3 > —00

Ky - + - - 4+ + w'=0 w; = —oo or
(1(w1 () =0,

w3y < 0. w, = 00, Or

2(wy (1)) = 0,
¢3(w3(8))* — 0.

Lemma 2.2 Assume that Y (¢t) is NOS of system (1) with A = 1. If

1

JTOO (Zizt))zdt o, T>ty.i=123 (3)

Then Y (t) belong to one of the classes k;,j = 1,2, ....,14.
Proof: Suppose that Y = (y,(£),y,(£),y5(t)) are NOS of (1) with 2 = 1 then we have four cases

to consider:
Casel. If y;,y,,y5 are eventually positive solution of (1) then we get, for all t > ¢,,.
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({1 (O (w1(0))*) = 0, ((2() (wz(6))*2)" = 0, ({3(0) (w3 (£))*3)" = 0. That means

{1 (@) (w1 (1), ¢, () (w5 (£))*2, {3(t) (w5 (t))* nondecreasing, hence there exists t; > t, such
that ¢, (t)(w](t))*, (1) (w5 (t))% and {5(t) (w5 (t))*s are eventually positive or eventually
negative. So there are eight sub-cases that can be discussed, which are:

Table 2. The eight possible cases that can occur in system (1),

i | (@i(®) >0 {H(w®)2>0 | {3(w3(8)% >0
ii. | Goi®)* <0 o) <0 | (ws()™ <0
iil. | (o))" <0 | Gwy()®? <0 | (3w ()™ >0
iv. GO <0 GE)® >0 | G@e)®s <o F=h
v. | Gai(@)n >0 Gw()™ <0 | {(wi(t)™ <0
vii | Goi(®))™ >0 Gw(t)? >0 | G(ws()™ <0
vil. | {(w1(0)) <0 | Gw(t)*2 >0 | G(ws(t)* >0
vill. | (1(01(®))" >0 Hwp()®2 <0 (3w ()™ >0
Now, the sub-cases above will be discussed as follows:
i §1(®) (w1 ()™ > 0,8, (8) (w3(£)*2 > 0, {3()(w3(1))* > 0.
Since ¢ (t)(w}(t))*r is positive nondecreasing then there exists t, = tyand c¢; > 0 such that
1) (wi ()% = ¢y, t = t, therefore

1

W, (t) = ( (fét))a_l’t > t,. (4)

Integrating (4) from t, to t we obtain,
1

w,(t) — w,(ty) = C% ftt <(1—ts)>a_l ds

As t — oo, it follows that }im w4 (t) = oo. Similarly we get tlim w,(t) = oo and L!im w3 (t) =
that is, (w,,w,, w3) € K;

ii. $1(O)(w1(1)M <0, () (wz(8)* <0, {3(B)(w3()) <0, t=t.

Suppose tlimil(t)(w;(t))“l =d; <0. We claim that &, =0, otherwise d, < 0, then

L@ (Wi ()™ < dy <0, that is
1

aq

wi () < (%) , t=>t,. (5)

Integrating (5) from t, tot
1

w,(t) — w,(ty) < dﬂil J: (Q—ts))a_l ds.

ast — oo, tlim w4 (t) = —oo, a contradiction, Therefor tlim (1) (w1 (t) =0, similarly we

can show that tlimiz(t)(wg (t))* =0 and tlim(3(t)(w§ (t))* =0 hence (wq,w,, w3) €K, .
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The proof of the iii.-viii. is similar and will be omitted. That leads to
(wq,w,,w3) €EK;,i =34,....,8, respectively.
Case 2. Let y, be an eventually positive solution and y,, y; are eventually negative solution then
from (1) we get ({1 (®) (w1 (£))*)" < 0, ({2 (D) (w3 (£))*2)" < 0, ({3(0) (w3())*2)" = 0.
That means {;(t)(wi(t))* and {,(t)(w;(t))* are nonincreasing while {5(t)(w3(t))* is
nondecreasing. We have two subcases that can be discussed, which are:
V. (0 (@1 (D)4 > 0,8, () (wy(£)® <0, (O (Ws(E)™ <0, t=t;.

{1 (O (wi(0)* >0 and ({1(O(wi()*) <0
suppose that,
tllrgo (1) (wi()* =d,, then () (wi(t)* =dy = 0, that is

1

w,'(t) = (%)al ,t >t (6)

Integrating (6) from t, to t we get
1

01(0) — wy(ty) > dyn ft t (zlts))“_l ds

ast — oo, tlim w4(t) = o0 or tlim 71O (W} (£)* = 0.

{2 () (w3 (1))* < 0and (¢ (0)(wy (£))*2) <0,
since {,(t) (w5 (t))*2 nonincreasing then there exists t, > t; and ¢, < 0 such that
G20 (w3(8)*? < ¢ <0,

1

w,'(£) < (Z;(Zt))“_z, t>t,. (7)

Integrating (7) from t, to t we get
1

L t 1 a
W, (1) — w,(ty) < %2 ftz ((2(5)) * ds.

As — oo tlim w,(t) = — oo.

{3 (w3 ()% <0 and ({3(t)(w3(t))*) =0
Suppose tlim@,(t)(wé ()% =d; < 0. We claim that ds; = 0, otherwise d; < 0, then

() (ws' ()% < dsy < 0, that is
1

w5 (t) < (Zjé))as t >t (8)

Integrating (8) from t, to t
1

w3(t) —ws3(ty) < 430‘% ftt <{3%S))a_3 ds.

ast - oo, tlim w3 (t) = —oo, or gimig(t)(a)g (t)* =0ifd; = 0,that is (w4, w,, w3) € Ky

Vi, 1(0) (w1 ()™ >0, & () (wz(1)*2 > 0, {3(8) (w3(8))™ <0.
The proof this subcase leads to (y;,y,,V3) € Ki,.
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Case 3. Let y, and y, are eventually negative solutions and y; be an eventually positive solution
of system (1) with A = 1. By applying the same proof style, followed in the above cases, taking
into account the change that is obtained between variables and derivatives we get the following
classes, (w1, w,, w3) € K;; and (w4, w,, w3) € K.

Case 4. Let y, and y; are eventually negative solutions and y, be an eventually positive solution
of system (1) with 4 = 1. By applying the same proof style, followed in the above cases, taking
into account the change that obtains between variables and derivatives, the following classes are
resulted in: (wq,w,, w3) € K;3and (wq,w,, w3) € Kq4.

3. NOS of System (1), Case 4 = —1.

In this section, the asymptotic behavior of NOS is studied with A = —1 which will used in
the following sections.
Lemma 3.1 Let 2 = —1 and (3) hold. Assume that Y (¢) = (v, (¢t),y,(t),y5(¢t)) are NOS of (1)
Then Y (t) belong to one of the following classes {L;,i = 1,2,3, ....,13}.

where:
Table 3. The classes of all possible NOS of system (1), with 4 = —1.
Classes Sign of w; (t) and w; Sign of ~ behavior ast — oo
w;
n w; W, W3 W W, Wi w; w;
Ly - - + + + +  w/<0 (i (O)(wi()* -
Oor
w; > ©
L + | - - =-1-7T- LO @)™ -0,
(1)2 — —00 Or
G2 (t) (w5 ()72 = 0
W3z = —
Lk  + - - - -+ 020 @) -0

w, — —o0 Or
Wy 20, () (w5 ()™ — 0
¢3(t) (w5 ()™ - 0
Ly + - — + - - w3 < 0. W, > 0
w, = —00 Of
¢2(t) (w5 ()72 = 0
w3 = —00
Ls + - — + - + wq —
w, — —00 Or
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L — =+ = =
L, — = = = -
Lg — = T+ [ = | +
Lo - -1+ | -] +
Ly - + — = —
Lyq - + — — +
Ly, = + - + —
L3 - + — + +

Proof: Suppose that (1) with 2 = —1 has NOS (y, (£), y, (t), y5(t)), then we have four cases to

consider:

wy =0,
w; <0,

w3 = 0.

w; <0,
w; =0,

wg = 0.

Case 1. Let y;,y,,y; areeventually positive solution of (1) then
t>t, >t

(O (wi())*) <0,i =123,
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$2(O) (w3 (1))*2 = 0
{3(0) (w3(8))* = 0
w;, = —oo or
{1(O) (w1 ()™ =0,
W, = —00,
¢3(8) (w3 (t))* - 0.
w, = —o0 or
{1(O) (w1 ()™ - 0,
w, = —o0,
w3 = ©
w, = —oo of
(1O (w1 ()™ =0,
$2(0) (w3 ()" = 0
¢3(8) (w3 (t))* = 0.
w, = —o0 or
(1O (w1 ()™ -0,
$2(O) (w3 (1))*2 = 0
w3 — 0.

w; 2 —©,
$2(0) (w3 (1))*2 = 0
w3 = —oo of
¢3(8) (w3 (t))* = 0.
W, = —00,

0)2 — 00,
w3 = —o0 of
J3(8) (w3 (t))* - 0.
{10 (w1 ()™ -0,
$2(80) (w3 ())*2 = 0,
w3 — —oo or
¢3(8) (w3 (t))* = 0.
(1O (w1 ()" =0,
W, — 00,
w3 = —oo of

¢3 (1) (w3 (8))* = 0.
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Which mean that ; (£) (w} (€)1, {, () (w (t))a2 and ¢5(6) (w} (t))w3 are nonincreasing, so there
is one sub-case that can be discussed, which are:
i $1(O) (@ ()™ >0, &(®)(0(®)™ >0, &) (w3®)° >0.
suppose tlirg (1) (w1 ()™ = dq, then { () (w1 ()" = d, = 0, that is
1

dl aq
w,'(t) = ((1@)) , t=>t, (9)

We claimthat &£, = 0, otherwise &, > 0.
Integrating (9) from t, to t we get,

01(0) — w0, (t,) = dyar J: (rt@) ds

2
ast - oo thm w4(t) = o or gim {1 () (w(t))* = 0 similarly we can get tlim w,(t) = oo or
tlim (Z(t)(wé (t))a2 = 0and tlim w3 (t) = or tlim {3 (t)(wg (1:))063 =0, that is (yq, 2, ¥3) €
L.
Case 2. Let y, be an eventually positive solution and y,, y; are eventually negative solution then
from (1) we get,

GO0 = 0, (50 (03)™) 2 0,(G (w3 ®)™) < 0.
That means ¢, (t)(w}(£))™ and {,(£)(w,(t))™ are nondecreasing while Z;(6)(w}(6))™ s

ii. 33 (0 (@) (0)“ <0, &) (wy®)™ <0, LB (ws®)™ < 0.

1) (wi(®))* <0 and ({1 (O)(wi(E))* ) =0
Suppose that tlimfl(t)(wi(t))“l =d; < 0. We claim that 4, = 0, otherwise d; < 0, then

4L (O (i ()™ < dq <0, that is

1

! d a
wi(t) < (cl(lt)) Lot >t,. (10)

Integrating (10) from ¢, to ¢t
1

w,(t) —wy(ty) < dla% ftt <(1ts)>a_1 ds

tlim w4 (t) = —oo a contradiction therefore ¢, = 0 and tlim (1) (wi(t)*™ = 0.

O (wh(0) <0 and (¢ @)(wy(©)?) =0
Suppose that tlimiz(t)(a);(t))a2 =d, <0. We claim that 4, = 0, otherwise &, < 0, then

5wy ()™ < d, < 0, that is

1

wh () < (Zj(zt))‘h, t>t,. (11)

Integrating (11) from ¢, to ¢t

Page | 56

ISSN: 2312-8135 | Print ISSN: 1992-0652

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq | www.journalofbabylon.com


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

RDRTINIE JOURNAL OF UNIVERSITY OF BABYLON

) ) Vol.31; No.1.| 2023
For Pure and Applied Sciences (JUBPAS)

ey ¥ \ v < lvlp\.
RO 4 |4 14

' alis

O T

o

v 5

T

y
14

TTov

Ty fireT

¢ I~

Lo wn e 2o o Rl 0

1

wy(t) —wy(ty) < 5‘20‘LZ ftt (621@)E ds,

ast oo, lim w,(t) = —coor tliqu(t)(wg(t))“z =0ifd, =0.

since, ¢, () (w5(®)™ <0 and (a5 (®) (w3 @®)™) <o.
That mean J5(t) (w3 (t))ag nonincreasing then there exists t, > t, and c; < 0 such that
@O0 ())® < ;<0

1

)“3, t >t (12)

C

{3(0)

ws(t) < (

Integrating (12) from t, to t we get
1

w3 (t) —w5(t,) < c30%3 J;({:@)E ds

As - o gim w3 (t) = — oo that is (v, y,, ¥3) € L,.

The proof of iii, v, and viii. are the same; hence, they are omitted. That lead to

(Y1, ¥2,¥3) € L, (V1,¥2,¥3) € Ly and (31,¥2,¥3) € Ls respectively.
Case 3. Let y; and y, are eventually negative solution and y; be an eventually positive solution

of system (1) with A = —1. By applying the same proof style, followed in the above cases, taking
into account the change that obtains the difference of variables and derivatives the following are
obtained: (y;,¥,,V3) € Lg — Lq.

Case 4. If Let y, and y; are eventually negative solution y, is eventually positive solution of
system (1) with A = —1. By applying the same proof style, followed in the above cases which,
taking into account the change that obtains the difference of variablesand derivatives, the
following, are achieved: (y;, ¥,, v3) € L1g — L13.

4. Main Results for system (1)

In this section, some theorems and corollaries are presented to show that all bounded solutions
oscillate or approach zero when time approaches infinity. In addition, deliver the behavior of some
unbounded solutions under the same given conditions.

Theorem 4.1 Assume that 0 < P;(t) <1,j =1,2,3,A = —1, t = t,. In additionto the

following conditions
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1

. t 1 &(s) a; aq
hl:l_»iour)fT <m ) q1.(s) (1 —?2(01(v))) dv) ds = o

1

lim sup ft (c;@fm)%z (s) (1 — P;3(o; (v)))a2 dv>a2 ds = o

t—oo

1

t/ 1q 8(s) az az
e[ (] 50 (=) ) ds=

Then every bounded solution of the system (1) oscillates.

Proof. Suppose that the system (1) has a NOS Y (t) = (y,(t), v, (t),y5(£))T so by Lemma 3.1,

table 3, there is only the possible case L, L3, Lg, L, to consider for t = t; = t,:
Case 1. Suppose that Y(t) € L,. Then we have
w; () = y:(®) + POy (7 () = wi(©) = yi ()

Then

yi(®) 2 (1 =P @O)w;(r:(1)),
Or

yi(o:(@®) = (1 - Pi(o; (t))) w; (1 (0: (1))
Integrating the first equation of system (1) from t to §(t) to have
§(t)

3 () (@ (O )M — {1 (Oi®))r == | g1 ()y*(0,(5)) ds
5(t)

{1 () (wy ()™ = 31(8)y, (02(s)) ds,

&(t) a
GO@ )2 | a1 (1-P(02(9))) w5 (r2(02(5) ) s,
1
8(t) a

Wi () = w,(T2(02 (D)) (% 41(s) (1 — P,(o; (s)))a1 ds) '

Integrating the last inequality from t, to t to obtain
1

t 1 8(s) a; ay
w01 () — w0, () = f wz(rz(azcs)))<m j 3:(5) (1= P5(0,(v))) dv) ds

t1
1

t 1 6(s) a, ay
0 ® - 0,6 > 0, (70 (0) | (m [ @ (1-700) dv> ds

Letting t — oo and by using the condition (13) leads to tlim w4 (t) = oo, implies that

tlim y,(t) = oo, a contradiction, similarly it can be shown that tlim Y, (t) = 0, gim y3(t) = o, a

contradiction this leads to the solutions Y (t) = (v, (t),y,(t),y; ()T oscillates.
Case 2. Suppose that Y(t) € L;. Then we have
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w1 (t) =y, (&) + POy (1) = 0. =2 3,

w, () = ¥,(1) + P (D) y,(1: (1)) = w, (1) < y,(t)

w3(t) = y3(t) + P3(D)y3(73(1)) = w3(t) < y3(0)
Then

yi(t) = w,(t) — ?1(t)w1(71(t)) (a)

¥2(0:®) < (1= P5(02(0)) w2 (T2(02(0)  (B)

y5(0:®) < (1= P5(03(0) ) w3 (T3(05(®) (€
Integrating the first equation of system (1) from t to 6(t) and using (14b) to get

6(t)
G (80) (@, (6OND - HOWE) == | 4:()ys" (02()) ds
1 &(t) ay 0%1
w () swz(rz(@(t))(m 0 (1-2,(0:())) ds)

Integrating the last inequality from t, to t to get
1

t 1 é(s) aq ay
0 ® = () < 0,(r (@) (m [ @ (1-700) dv> ds

(14)

(15)

Letting t — oo and in view of condition (13), the last inequality (15) leads to tlim w4 (t) = —oo,

which is a contradiction since w4 (t) > 0 and bounded.

Integrating the second equation of system (1) from t to 6(t) and using (14c) to get
0)
$2(8(®))(w5(8()))%2 = G () (w5 ()% = — 32(8)y5? (02(s)) ds

t
1

q2(s) (1 —Ps (02 (S)))az d5>a2

é(t)

W, (t) < w3(15(03(1))) <Zz ©)J,

Integrating the last inequality from t, to t to get

1
t 1 5(s) a a_z
W, (t) — wy(t1) < ws | 13(05(t — s){1—=Ps(0,(v dv| ds
() = w3(t) < w3 (1505 1)))ft1<{2(5)£ 4:() (1 - 25(0,))) )
Letting t — oo and by using the condition (13) leads to tlim w,(t) = —oo, implies that
tlim y, (t) = —oo. a contradiction since y, (t) is bounded.

Integrating the third equation of system (1) from t to 6(t) to get
5(t)

G(8) (@5 (8M)N% = GO (wz )% = - a3()y;* (01(s)) ds

t
1

1 &) as
wy () = <m ft g3 (s) y;® (03(8))d8>

Integrating the last inequality from t, to t to get
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1

t

w3 — 03t > |

L1

We claim that li{n infy, (t) = 0, otherwise lign infy, (t) = l; > 0, thus there exist t, > t; large
enough such that y, (t) = [, hence

t 5(s)

1
w3(t) — wz(ty) = l1f (m a3(s) dv) 3 ds

Letting t — oo with the virtue of condition (13), from the last inequality we obtain
tlim w3 (t) = oo, which isa contradiction since w5(t) < 0 and bounded. Thus li{ninfyl(t) =0,

so there is a sequence t,, —» o,as n — oo,such that lim y, (t,) = 0, we claim that
n—->oo

tlim w4 (t) =L, =0, otherwise if L, > 0 then from (14a) it follows

y1(tn) = wq(t,) — ?1(tn)w1(71 (tn)) > w4 (ty) — .U(Ul(fl (tn))

Asn — oo, it follows from the lastinequality 0 > (1 — u)L, a contradiction, and so
tlLrg w4 (t) = 0. Implies to }Lf?o y1(t) = 0. Hence y,(t), y;(t) are oscillatory while y; (t), either
oscillatory or nonoscillatory tends to zero as t — oo.
Case 3. Suppose that Y(t) € Lg. Then we have

w1 () =y (8) + POy (12:(0) = 0, ) < 3, () <O,

w2 (1) =y, (1) + P,([0)y2(12(1)) = w1 () < y,() <0,

w3(t) = y3(t) + P3()y3(73(0) = w3() = y;(¢) > 0.

Then
yi(0:(®) < (1= Pi(0:®) ) 0111 (0:(0) (@)
¥2(02(0) < (1= Po(0,(0)) wa(r(0:(®) () (18)
y3(t) = w3(t) — ?3(0003('53@)) (c)
Integrating the first equation of system (1) from ¢ to 6(¢t) and using (18b) to get
$1(8®)) (@1 (8MN™ = GO (@i ()™ = - f(t)czl(s)yz“l (02(s)) ds
5(0)

GO@WEH < [ a16) (1-P5(0:0)) " 0 (r2(02())ds,
1 &(t) aq ail
w1 (1) < w, (Tz (07 (t)) (mf 31(s) (1 - P, (Uz (5))) ds)

Integrating the last inequality from t, to t to get
1

t 1 &(s) aq az
01(8) — 01 (t1) < 0, (11(02(1)) (m f 3:(5) (1= P,(0:(»))) dv> ds
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Letting t — oo and in view of condition (13), the last inequality leads to tlim w4(t) = —oo,

which is a contradiction with boundednees of w, (t).

Integrating the second equation of system (1) from t to 6(t) and using (18c) to get
1G]

$(8(®))(w5(8()))% = () (w5 ()% = — 42(8)y5 7 (02(s)) ds
5(t)

{(O)(wy ()% = f 32(8)y;*(02(s)) ds

t
We claim that li{n infy; (t) = 0, otherwise li{n infy;(t) = I3 > 0, thus there exist t, > t, large

enough such that y;(t) =I5, hence
1

t 1 5(s) 0-'_2
W, () — w,(ty) = l3f <—f a2 (s) dv) ds
ty (2 (S) s
Letting t — oo with the virtue of condition (13), from the last inequality we obtain
tlLrg w,(t) = oo, which isa contradiction since w,(t) < 0 and bounded. Thus liggonfy3 () =0,

so there is a sequence t,, — o,as n — oo,such that lim y;(t,,) = 0, we claim that
n—->oo

tlim w3(t) = L3 =0, otherwise if L; > 0 then from (18c) it follows

Y3 (tn) = w3(tn) - ?3 (tn)w3(T3 (tn)) = ws(tn) - Mws(T3 (tn))
As n — oo, it follows from the lastinequality 0 > (1 — u)L4 a contradiction, and so
tlim w3(t) =0, implies to tlim ys(t) =0.
Integrating the third equation of system (1) from t to 6(t) to get
&(0)

G3(8)) (3 (6M )% — T3(O(ws )% = — a3 ()yy* (04(5)) ds
80

{3(O) (w3 ()% < f a3 (8)y,? (a5(s)) ds

1

1 8(t) as as
03 (®) < @, (11 (0:(0)) (m j 4:(5) (1= P3(05(5))) ds>

Integrating the last inequality from t, to t to get

t 1 8(s) aq ail
03(®) = 03(6) < (1 1 (1) | (53(5) 45(5) (1~ Ps(0:»))) dv) ds (19)

Letting t — oo and in view of condition (13), the last inequality leads to tlim w3 (t) = —oo, which

is a contradiction. Hence y; (t), y, (t) are oscillatory while y; (t), either oscillatory or
nonoscillatory tends to zero as t — oo. Other cases can be handled in the same way. The proof is

complete.
Corollary 4.1 Suppose that A = —1 and (3), (13) are held. Then every solution of system (1) is
either oscillatory or tlimlyl(t)l = gimlyz ®|= tlim|y3(t)| = oo,
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Proof. Suppose that system (1) has a NOS Y (t) = (v, (t),y, ),y ()T so by Lemma 3.1 Table
3, there are only the possible classes L; — L, to consider for t > t; > t,. If Y(t) is bounded then
by Theorem 4.1, it follows that Y (t) is oscillatory or nonoscillatory and converges to infinity as
t — oo. Otherwise, Y (t) is unbounded: then the following cases will be achieved:

Case 1. Suppose that Y(t) € L,. By Lemma 3.1, it follows L11—>r23 y5(t) = o and tlLr?o y, (t) = —oo.
By integrating the first equation of system (1) from t to §(t) and using (18b), this yields:

5(t)
3 (8@ (@ (O )M — 1O ®)) == | g1 ()y*(0,(5)) ds

t
&(t)

(@) (wi () < 31 () v, (a,(s)) ds

1

1 &(t) a, a
W () swz(rz(az(w)(m f 3:(5) (1 - P,(=(9))) ds)

Integrating the last inequality from t, to t to get
1

t 1 &(s) a, ay
w1(t) —w,(ty) < w, (71(02(151)) <€1(5)f d1(s) (1 - :Pz(az(v))) dv> ds

Letting t — oo and in view of condition (13), the last inequality leads to gim w4 (t) = —oo, which

is a contradiction with positivity of w, (t). this leads to the solutions Y(t) oscillates.
Case 2. Suppose that Y(t) € L,. By Lemma 3.1, it follows tlim y1(t) = oo and tlim y5(t) = —oo.

Integrating the second equation of system (1) from t to 6(¢t) and using (18c) to get
1G]

(8 (w3(8(O)N* — S (O (W ()2 = — a2(8)y5* (02(s)) ds
80

LO@O)2S | g(9)y37(0:(9)) ds,
50 w @
W5() < w3 (73(03()) (m j 3:(5) (1= P3(02(9)) ds>

Integrating the last inequality from t, to t to get
1

020 = 0:(6) < 0 (13(00) [ ((2% | V0 (1= Pa(2) du>“2 ds (20)

t
1
Letting t —» o and by using the condition (15) leads to tlim w,(t) = —oo, implies that

tlim y, (t) = —oo. We get tlimlyl(t)l = tlim ly, (O] = tlimlyg (t)| = oo. The proof of other cases

are similar to the proof the cases 1 or 2.
Theorem 4.2 Assume that 0 < P;(t) < P; < 1,1 =1. Let y,,y,, y; area NOS of (1) and
suppose the corresponding (wq,w,, w3) € K, satisfies. If
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( tr %) 'L
lim supf ! f q.(s)ds - dv = o
t—oo T _{1(77) v 1 ]
1
‘tr 1 (* a
<hrnsuj —J Sds| dv=o0w, t=T (21)
t—s00 p r _cz(v) , QZ() |
1
T2 [ gaas|”
hmsuj —f s)ds| dv= o
=P | 5w ),
Then
thm V= hm w; =0,
Jim v, = Jim 2 = 0,
tllm V3 = tllm w3 = 0.

Proof. Suppose that y;,y,,y; are positive solution of (1). since w,(t) > 0 and w;(t) < 0, then
there exists finite /4, such that

tlim w,(t) =4
We shall prove that £, = 0. Assume that £, > 0. Then fore any ¢ > 0, we have

hZ(p P2) |t js easy to verify that
2

Y2 () = w,(t) — pz)’z(fz(t)) >Ny —pa(fy + &) =ky(fy + &) > kyw, (D),
Where k M
2 /L2+E

Using the above inequality, we obtain from (1)

|((1(t)(w1(t)) ) = k2 Q1(t)wgl(0'1(t))

fy, < wy(t) < A, + g, eventually. Choose 0 < € <

> 0. By similar way, we have k; > 0,k; > 0.

(@ (w3®)" ) > k3?2 (Dws? (0, (1) (22)

(¢ (w3 (t)) ) > k?q3(Dw;? (03(1))
Integrating the first inequality of (22) from t to oo, we get

AGICAG) R "l IAGIEL CAG) LT

t
Using w(a1(t)) = #,, we see that

1
a1

1 [ee]
wi(t) < —kyh, lm}t ‘h(s)dsl )

Integrating from ¢t to t, we obtain

wy(t) —w(ty) < —kzhzf lzlz—u)foo%(s)dslal du, (23)

As t — oo, a contradiction will be occurred. Therefore, 4, = 0. Moreover, the inequality
0 < y,(t) < w,(t) implies tlim y, (t) = 0.

By the same way we can proof that tlim y3(t) = 0 and tlim y1(t) = 0 and the proof is complete.
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Theorem 4.3 Assume that A = 1, and the conditions (3), (13) holds. Then all the solutions Y (t)
of the system (1) belong to the classes K, K,,, K, are oscillate.

Proof. Suppose that system (1) has a NOS Y (t) so by Lemma 2.2, table 1, there are only the
possible cases Ko, K5, K14, 10 consider for t > t; > t:

Case 1. Suppose that Y(t) € K,,. Then we have

w10 =y ) + Py Oy1(1:(0)) = w1 () = 3, (1)

w2(t) =y, () + P, (V)y, (Tz (t)) = w, () <y, (t) (24)
E w3 () = y3(£) + P3()y3 (13(t)) = w5(t) < y3(t)
.(: Then
P y1(o3(t)) = (1 - :P1(03(t))) w1 (03(t))
5 y2 (0, () < (1 - ?z(al(t))) w, (01 (1)) (25)

ISSN: 2312-8135 | Print ISSN: 1992-0652

Y3(0:()) < (1= Py(0,(6))) w3 (0,(2))
Integrating the first equation of system (1) from ¢ to 6(t) to get
(3]

G1(8®) (w1 ()™ = SO (wi () = a:1()y; " (01(s)) ds

t

Ty Ty S

' alis

6(t)
—(1 (O (wi ()% < 31()y, " (0:(5)) ds,

1
wyt (o1 (1)) 8(6)

—wy(t) < < A0 g, (s) (1 - P, (al(s)))a1 ds> '

Integrating the last inequality from t, to t to get

O T

vy

1

~

1 >a_1< S(S)ctl(s) (1 - P, (al (v)))a1 dv)a1 ds

0]

v 5

—w,(t)+ w,(t) < wz(al(tl)) j;t(

T

3 Letting t — oo and by using the condition (13) leads to tlim w4 (t) = oo, implies that
tlim y1(t) = oo, a contradiction.

E Integrating the second equation of system (1) from t to 6(t) to get

- 5(0)

' 2 (8(0) (@3 (6M)*2 = LMW ()2 = | g2()yy2(02()) ds,
b t

~» 5(t)

&8O @, (00N - 6O@HD < [ a:6) (1= P3(0:9))” 08 (7,9,

é(t)

— (D) (W} ()% < f 5:() (1= P5(0,())” w(0z())ds,

1

w3? (0,(8(8))) 5@ . @
—w3(t) S( (fz(t) ) t g2(s) (1—?3(02(5))) ds)
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Integrating the last inequality from t, to t to get

t [ wg? (02(6(5))
—w, (D) + wy(ty) < Jt (e

az

)st(s)% (s) (1 — Py (02 (v)))a2 dv ds

1 s o
—w, () + w(ty) < w, (UZ(S(t)))f ((Zlm)al <f5( )%2 © (1 B ?3(02(17))) dv> .

B Letting t — oo and by using the condition (13) leads to gim w-,(t) = oo, implies that

r lim y, () = oo, a contradiction.
re Integrating the third equation of system (1) from ¢ to §(t) to get
- 500
() (W5 (8% — LO(Ws )%= = | a3()y (03(s)) ds

t
6(t)

=M (wz()* = 43 (), (03() ds,

t

wfs (0.3 (t)) 8(t) a

—w3(t) = ( A0 t a3 (s) (1 — 501(03(5)))“3 d5> 1

Integrating the last inequality from t, to t to get

t <wf3 (o5(s)) (5@
(3 (S) t

Ty Ty S

1

' alis

1

ads3 (U) (1 — fPl(O'3 (U)))as dv)az s

1 az 6%2
—w3(6) + w3(t) = w4 (03(t:)) GZE @@mrﬁﬂﬁw»)dﬁ ds

Letting t -» o and by using the condition (13) leads to tlim w3(t) = —oo, implies that

-wﬂﬂ+%&02f

t1

O T

t 5(s)

o

v 5

T

tlim y; (t) = —oo, a contradiction. This leads to the solutions Y (t) oscillates. Other cases can be

y
14

TTov

handled in the same way. The proof is complete.

E Corollary 4.2 Suppose that (3) and (13) are held. Then every solution of the system (1) with 1 =
“‘[1: 1 iseither oscillatory, almost oscillatory, tlim yi(t)=0or tlimb’i ®)| = oo, i =1,2,3.

[ Proof. Suppose that system (1) has a nonoscillatory solution Y (t), so by Lemma 2.2, table 1,
D . . .

o there are only the possible classes K; — K, to consider for t > t; > t,. If Y(t) is bounded then

by Theorem 4.3, it follows that Y (t) is oscillatory. Otherwise, Y (t) is unbounded:
Case 1. Suppose that Y(t) € K,. By Lemma 2.2, it follows tlim w;(t) = oo, it follows that

tlim yi(t) =00 i =123
Case 2. Suppose that Y(t) € K, K;,, K14. By Theorem 4.3, tlimb’i ()] = oo, i =1,2,3.
Case 3. Suppose that Y(t) € K5. By Lemma 2.1, it follows tlim y3(t) = oo,
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Then we have
w1(t) = y1(&) + POy (1. (1) = 01O =2 3, ()
W, () =y, () + POy, (12 (1)) = w, (1) = ¥, (1)
w3(8) = y3 () + P3()ys(13(1)) = w3(t) = y3 ()

Then

y1() = w,(t) — ~‘P1(t)w1('[1(t)) (@)

Y2(8) = 0,(t) — P, (Dw, (72 (1)) (b) (26)

¥5(02(0) = (1= P3(0,(1))) w3 (5 (0)) (c)
Integrating the first equation of system (1) from ¢ to 6(t) to get

()
1(6(0) (w1 (6™ — (O ()™ = : 31()y;* (01(5)) ds
0)

—{1 (O (wy(£))* = %1(5)3’20(1 (01(5)) ds,
t
We claim that li{ninf y, (t) = 0, otherwise li{n infy,(t) =1, > 0, thus there exist t, > t; large

enough such that y,(t) > [, hence

Integrating the last inequality from t, to t we get
1

t 1 5(s) aq
—wt+wt2lj— s)dv ] ds
1(8) 1(t) =1 . <Z1(5) . a1(s) )

Letting t — oo with the virtue of condition (21), from the last inequality we obtain
tlim w4,(t) = —c0 = tlim y;1(t) = —oo which is a contradiction since y,(t) > 0 and bounded.
Thus, ligninfy2 (t) = 0, so there is a sequence t,, - ,as n — oo,such that lim y,(t,,) =0,

—00 n—oo
we claim that tlim w,(t) =L, = 0, otherwiseif L, > 0 then from (b)-(34) it follows

Y2 (tn) = wz(tn) - :PZ (tn)wz (TZ (tn)) = wz(tn) - :uwZ(TZ (tn))

As n — oo, it follows from the lastinequality 0 > (1 — u)L, a contradiction, and so
tlim w,(t) =0, implies to tlim y,(t) =0.

Integrating the second equation of system (1) from t to 6(t) to get
5()

P (5(1')) (w; (5 (t)))az — (O (wy ()% = 92 (S)}’3a2 (02 (5)) ds

t

() (1-P3(02()) 022 (02()) s,

1

a2 (s) (1 - ?3(0'2(5)))(12 d5>a1

5(t)

& (50) (@4 (50))% — 4,() (wy ()% > f

a);’z (0.2 (t)) 8(t)

ez (8) 2 < O ).
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Integrating the last inequality from t, to t to get

t (wgz (0.2 (S)) 6(s)
{2 (s) s

1

~w, () + wy(t)) = f 42(5) (1= Py(020)) dv)az ds

t1
5(s)

1
—w2(t) + 0, (t2) = w3(0,(t1)) j 0] ( ) (1 - P5(0,)) " d )ds
Letting t — oo and by using the condltlon (13) leads to gim w,(t) = —oo then gim y,(t) = —

this is a contradiction with positivity of w,(t)

Integrating the third equation of system (1) from t to 6(t) to get
(1)

G(8(®)) (w5 (8@®) )™ — {3 (O (ws ()% = 43 (), (05(5)) ds
6(t)

—{3(O)(w3(1))% < a3 )y, (03(s)) ds,
t
We claim that lign infy, (t) = 0, otherwise lign infy, (t) = 1, > 0, thus there exist t, > t, large

enough such that y, (t) = [, hence

Integrating the last inequality from t, to t we get
1

t 5(s) as
—wt+wt§lj f sdv) ds
3(t) s(t) <L . <Z3(s) . a3 (s)
Letting t — oo with the virtue of condition (13), from the last inequality we obtain
tlim w3 (t) = —oo, which isa contradiction since w4(t) > 0 and bounded. Thus

ligninfyl(t) = 0, so there is a sequence t, — ©,as n — oo, such that lim y, (t,) =0, we
—00 n—oo
claim that tlim w4 (t) =L, = 0, otherwise if L; > 0 then from (26a) it follows

yl(tn) = wl(tn) - *‘Pl(tn)wl(‘[l (tn)) 2 wl(tn) - .uwl(T1 (tn))
Asn — oo, it follows from the lastinequality 0 > (1 — u)L, a contradiction, and so
tlim w4 (t) =0, Implies to tlim y,(t) =0.

This leads to the solutions Y (t) = (y,(t),y, (t),y; (£))T is almost oscillatory. Other cases can be
handled in the same way. The proof is complete.

5. Examples

In this section, some illustrative examples are presented for the purpose of verifying the
results that have been reached.
Example 5.1 Consider the NDS:
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e

A un A e Ao Rl g

!

( 1 17 143
(Kyl(t) ot —2)>l ) =3 (1+ﬁ) e3y3(t—1),

!

([(yz(t) +e 1y, (t — 1))’]%> = %(1 + %)g e§y§(t - 3), (29)

A

1

L<[('«V3 () + e~ 2y,(t — 1))’]%> = %(1 + 3—23>§e§y1§(t ~2)

Here

A=1, “1 3,a; —z:“3 :g'ﬁ(t) =) = 33() =1,
e

?1(t) = E IPZ(t) = _1ﬂ?3(t) = 8_2;

) =t—-2,1,(t) =t—1,135(t) =t —1,0,(t) =t — 1,0,(t) =t — 3,05(t) =t — 2,
3 ER 1

30 =3(1+5) €3,4,(0) =2 (14 5) 5,450 =1 (14 5)e5.

w1 (8) = y1(6) +51(t —2) > 0,0;(t) > 0, 0] (£) > 0,

w,(t) = ¥, (t) + ey, (t — 1) > 0,w, (t) > 0, wy (t) >0,
w3(t) = y3(t) + e 2y;(t — 1) > 0,w5(t) > 0, wy (t) >0,
Then (e, et,et) € K;.
And

1 1

[ o) =] o) = o)
lirtn_)sc.;lpjt (jS(S) 3 (1 +2—22)3 e3(1—eH3dv 5

3
t 5(s) 3 1\5 o 3
lim supj j —(1 +—2) es(1 —e 2)sdv | ds = oo.
t—>oo 0 s 5 e

1 3

1
| tf 86s)q 11\3 2 1 §d p
i —(14+-—) es(1-= = oo.
”?illpjo L 3( +3e3) e3< 2) vpeEs

all the conditions of Theorem 4.3, satisfied. The solution (et, ef, e*) is NOS tends to infinity as

t — oo,

Example 5.2 Consider the NDS:
3
([02@ + e~ 0)T) = 2oz -2

([(yz ) +e72y, (¢ - z>)’]§) S PR () (30)

\((Y3(t) +e Py (t - 3))')’ =6e7"y,(t—4)

wIN

1
as

dt=j dt = oo,
0

A
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Here
A=1lay =30, =203 = 1,0,(t) = (1) =53(t) =1,

Pi(t) =e™1,P,(t) = e 2, P3(t) = e 3,g,(t) __6 , @2 (1) ——%9%3'43&) = 6e~".
) =t—1,1,t) =t—2,15(t) =t —3,0,(t) =t — 2,0,(t) =t — 1,05(t) =t — 4,
w, () =y,(t) +e 1y, (t—1) > 0,w;(t) <0,w) () >0,
W, (1) = ¥, (t) + e 2y, (t —2) > 0,w, (t) < 0, wy (t) >0,
w3(t) = y3(t) +e3y;(t —3) > 0,w5(t) < 0,0y () >0,

Then (et 2e7%, 3e™t) €K,
1 1 1

[ ()= = [ (e (e

5

1
3 3 (P35 =2 \3
lim supj j —dv ds = oo,lim supj J —Y3esdv| ds = o,
t—oo 4 t—oo 0 s 5

lim supf j 6e~*dvds =

t—>o0

all the conditions of Theorem 4.2, satisfied. The solution (e~¢,2e~¢, 3e™*) is nonoscillatory
solution tends to zero as t — co.o
Example 5.3 Consider the NDS.

((a <<x(t) +%x(t — 27‘[)>”>3>, = —3a (Z)g sin? ty(t — 3;)
< (b (()’(t) +%y(t - 271)),,)3), = —3b (2)3 sin?t x (t - 37”) (31)
L(c (()’(t) + %Y(t — 27‘[)),’)3), = —3c (%)3 sin?t x (t - 3;)

From (31) we have
G0 = a5, =b,5(6) =, 3’1(t) =P =P =, a1 =ay=a; =3
0,(t) = 0,(t) =03(t) =t —— T1(t) =1,(t) = 13(t) = t — 2m.

3
g,(t) = —3a (Z) sin?t, g, (t) = —-3b (Z) sin?t, g3 (t) = =3¢ (Z) sin?t,
to test the conditions (5) and (15) note that 6(t) — t >c;>0,t> T for some ¢; > 0 then

th_)rgloj JMS) (1(5) _dEds = hm.[ fa(S) dfds =|- llm.f fa(S)dEds = 0

By the same way

t 8 aiz [t 5 ;—3
im | () s = omm [ [ () e =
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Now

5(s)
hmJJ <
t—ooo

5(s) 5(8) 5
}Lrgff (L sa(3)

1

zl(f)f o (1- ?z(al(e)))d9> déds =

1

sin?(0) (1 - %) d@) déds

3

1

- @ian [ [7([ o)
@ Gt [ -] o
= (%)é (Z)( - tlgrgf fS(S) <[9 — = sin 29]6(6)) déds
Q[0 o 01 o
Similarly,
lim jT t L " (& L 5(6)42 ) (1 - ?3(03(9))) de>§ déds = oo
And

1

0 © :
}Lfng f (%f: f 4:(0) (1 - P1(0,(9))) dH) déds = oo

so all conditions of theorem 4.1 hold, hence every bounded solution of (33) either oscillate or
converge to zero as t — oo. For instance the solution (y1 (), y,(t),y3 (t)) = (sint, sint, sint) is

such an oscillatory solution.

Conclusion

This paper was developed to study the oscillation and asymptotic behavior solutions of
system of second order half linear neutral differential equations. All nonoscillatory solution were
classified into 16 different classes. Some sufficient conditions given to ensure most of these classes

non-occurring. While from the rest classes it has been proven that under a certain condition all
bounded solutions of this system are either oscillatory or converge to zero as t — oo. As well as

all unbounded solution are either oscillates or tends to +ooas t — oo.
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