Fixed Point Theorems and Iterative Function System in G-Metric Spaces

Authors

  • Salwa Salman Abed Dep. Of Math., Coll.of Educatiuon for Pure Sciences, Ibn – Al- Haitham, Univ. of Baghdad https://orcid.org/0000-0002-0581-253X
  • Anaam Neamah Faraj Dep. Of Math., Coll.of Educatiuon for Pure Sciences, Ibn – Al- Haitham, Univ. of Baghdad

DOI:

https://doi.org/10.29196/jubpas.v27i2.2228

Keywords:

G-metric spaces, Local fixed points, F- contractions mappings, Iterated function systems

Abstract

Iterated function space is a method to construct fractals and the results are self-similar. In this paper, we introduce the Hutchinson Barnsley operator (shortly, operator) on a  metric space and employ its theory to construct a fractal set as its unique fixed point by using Ciric type generalized -contraction in complete metric space. In addition, some concepts are illustrated by numerical examples.

Downloads

Download data is not yet available.

References

B. B. Mandelbrot, The fractal geometry of nature, vol. 173. WH freeman New York, 1983.

Crownover and M. Richard, Introduction to Fractals and Chaos, Jones a Bartlett Publishers London, 1990.

J. E. Hutchinson, Fractals and self similarity. University of Melbourne.[Department of Mathematics], 1979.

M. F. Barnsley, Fractals everywhere. Academic press, 2014.

A. Petrusel, “Fixed point theory with applications to dynamical systems and fractals” in Seminar on fixed Point Theory Cluj-Napoca, Vol. 3, pp. 305–316, 2002.

S. L. Singh, B. Prasad, and A. Kumar, “Fractals via iterated functions and multifunctions,” Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1224–1231, 2009.

Z. Mustafa, and B., Sims, "A New Approach to Generalized Metric Space", J. of Nonlinear and Convex Analysis Vol. 7, No. 2, pp. 289-297. 2006.

S. S. Abed and H. A. Jabbar, "Coupled points for total weakly contraction mappings in g_m-spaces" International Journal of advanced Scientific Technical Research, vol. 6, No. 3, pp. 64-79, 2016.

S. S. Abed and K. E. A. Sada, “Common fixed points in modular spaces,” Ibn AL-Haitham J. Pure Appl. Sci., pp. 500–509, 2018.

D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces,” Fixed Point Theory Appl., Vol. 2012, No. 1, p. 94, Dec. 2012.

Z. Mustafa, H. Obiedat, and F. Awawdeh, “Some fixed point theorem for mapping on complete G-metric spaces,” Fixed point theory Appl., vol. 2008, no. 1, p. 189870, 2008.

S. S. Abed and A. N. Faraj, “Fixed Points Results in G-Metric Spaces,” Ibn AL-Haitham J. Pure Appl. Sci., vol. 32, no. 1, pp. 139–146, 2019.

D. R. Sahu, A. Chakraborty, and R. P. Dubey, “K-iterated function system,” Fractals, vol. 18, no. 01, pp. 139–144, 2010.

S. S. Abed, “Fixed Point Principles in General b-Metric Spaces and b-Menger Probabilistic spaces,” J. Al-Qadisiyah Comput. Sci. Math., vol. 10, no. 2, p. 42, 2018.

S. S. Abed and H. A. Jabbar, “Coupled points for total weakly contraction mappings via ρ-distance,” Int. J. Basic Appl. Sci., vol. 5, no. 3, p. 164, 2016.

S. S. Abed and A. N. Faraj, "Topological properties of G-Hausdorff metric", International Journal of Applied Mathematics and Statistical Sciences (IJAMSS), Vol.7, No. 5, pp. 1-18, 2018.

A. Kaewcharoen and A. Kaewkhao, “Common fixed points for single-valued and multi-valued mappings in G-metric spaces,” Int. J. Math. Anal, vol. 5, no. 36, pp. 1775–1790, 2011.

T. Phaneendra and K. K. Swamy, “Unique fixed point in G-metric space through greatest lower bound properties,” Novi Sad J. Math, vol. 43, no. 2, pp. 107–115, 2013.

R. Uthayakumar and G. A. Prabakar, “An iterated function system for Reich contraction in complete b metric space,” World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng., vol. 7, no. 11, pp. 1640–1643, 2014.

Published

2019-04-01

How to Cite

[1]
S. S. Abed and A. N. Faraj, “Fixed Point Theorems and Iterative Function System in G-Metric Spaces”, JUBPAS, vol. 27, no. 2, pp. 329 - 340, Apr. 2019.

Issue

Section

Articles