Fixed Point Theorems and Iterative Function System in G-Metric Spaces

Main Article Content

Salwa Salman Abed
Anaam Neamah Faraj

Abstract

Iterated function space is a method to construct fractals and the results are self-similar. In this paper, we introduce the Hutchinson Barnsley operator (shortly, operator) on a  metric space and employ its theory to construct a fractal set as its unique fixed point by using Ciric type generalized -contraction in complete metric space. In addition, some concepts are illustrated by numerical examples.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
S. S. Abed and A. N. Faraj, “Fixed Point Theorems and Iterative Function System in G-Metric Spaces”, JUBPAS, vol. 27, no. 2, pp. 329 - 340, Apr. 2019.
Section
Articles

References

[1] B. B. Mandelbrot, The fractal geometry of nature, vol. 173. WH freeman New York, 1983.

[2] Crownover and M. Richard, Introduction to Fractals and Chaos, Jones a Bartlett Publishers London, 1990.

[3] J. E. Hutchinson, Fractals and self similarity. University of Melbourne.[Department of Mathematics], 1979.

[4] M. F. Barnsley, Fractals everywhere. Academic press, 2014.

[5] A. Petrusel, “Fixed point theory with applications to dynamical systems and fractals” in Seminar on fixed Point Theory Cluj-Napoca, Vol. 3, pp. 305–316, 2002.

[6] S. L. Singh, B. Prasad, and A. Kumar, “Fractals via iterated functions and multifunctions,” Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1224–1231, 2009.

[7] Z. Mustafa, and B., Sims, "A New Approach to Generalized Metric Space", J. of Nonlinear and Convex Analysis Vol. 7, No. 2, pp. 289-297. 2006.

[8] S. S. Abed and H. A. Jabbar, "Coupled points for total weakly contraction mappings in g_m-spaces" International Journal of advanced Scientific Technical Research, vol. 6, No. 3, pp. 64-79, 2016.

[9] S. S. Abed and K. E. A. Sada, “Common fixed points in modular spaces,” Ibn AL-Haitham J. Pure Appl. Sci., pp. 500–509, 2018.

[10] D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces,” Fixed Point Theory Appl., Vol. 2012, No. 1, p. 94, Dec. 2012.

[11] Z. Mustafa, H. Obiedat, and F. Awawdeh, “Some fixed point theorem for mapping on complete G-metric spaces,” Fixed point theory Appl., vol. 2008, no. 1, p. 189870, 2008.

[12] S. S. Abed and A. N. Faraj, “Fixed Points Results in G-Metric Spaces,” Ibn AL-Haitham J. Pure Appl. Sci., vol. 32, no. 1, pp. 139–146, 2019.

[13] D. R. Sahu, A. Chakraborty, and R. P. Dubey, “K-iterated function system,” Fractals, vol. 18, no. 01, pp. 139–144, 2010.

[14] S. S. Abed, “Fixed Point Principles in General b-Metric Spaces and b-Menger Probabilistic spaces,” J. Al-Qadisiyah Comput. Sci. Math., vol. 10, no. 2, p. 42, 2018.

[15] S. S. Abed and H. A. Jabbar, “Coupled points for total weakly contraction mappings via ρ-distance,” Int. J. Basic Appl. Sci., vol. 5, no. 3, p. 164, 2016.

[16] S. S. Abed and A. N. Faraj, "Topological properties of G-Hausdorff metric", International Journal of Applied Mathematics and Statistical Sciences (IJAMSS), Vol.7, No. 5, pp. 1-18, 2018.

[17] A. Kaewcharoen and A. Kaewkhao, “Common fixed points for single-valued and multi-valued mappings in G-metric spaces,” Int. J. Math. Anal, vol. 5, no. 36, pp. 1775–1790, 2011.

[18] T. Phaneendra and K. K. Swamy, “Unique fixed point in G-metric space through greatest lower bound properties,” Novi Sad J. Math, vol. 43, no. 2, pp. 107–115, 2013.

[19] R. Uthayakumar and G. A. Prabakar, “An iterated function system for Reich contraction in complete b metric space,” World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng., vol. 7, no. 11, pp. 1640–1643, 2014.